Engendering Trust in Buying and Selling Agents by Discouraging the Reporting of Unfair Ratings

Jie Zhang and Robin Cohen

School of Computer Science
University of Waterloo
Waterloo, ON, Canada

March 27, 2007
Outline

1. Motivations for Our Work
2. Our Incentive Mechanism
3. Examples
4. Experimental Results
5. Discussion and Related Work
6. Research Issues for the Future
Motivations for Our Work

- Electronic marketplace
 - Software agents act on behalf of human users
 - Offloading processing required by people

- Challenge
 - Uncertain and dynamic environment
 - Self-interested agents may engage in deception
 - Selling agents may not deliver promises (untrustworthy)
 - Buying agents may provide unfair reporting of seller reputation

- Intelligent agents
 - Learning behavior of other agents
 - Making effective decisions for human users
 - Engendering trust from users
Motivations for Our Work

Our insight

▶ To allow information sharing within marketplace
 ★ Buyers make decisions with more precise knowledge of sellers
 ★ A personalized approach for buyers to model sellers
 ★ Flexibility to adapt preferences of human users

▶ Honesty is promoted amongst buying agents
 ★ Sharing fair information about sellers allows for successful purchases
 ★ Trustworthy sellers will be reported truthfully and gain sales

An incentive mechanism

▶ Buyers choose neighbors to form social network
▶ Sellers model buyers based on social network
▶ Sellers decrease/increase prices/quality for reputable buyers
▶ Creates incentives for buyers to provide fair ratings
Our Incentive Mechanism

- E-marketplace setting
 - Self-interested buying and selling agents
 - A central server collects and maintains information of agents
 - Buying and selling process is operated as a procurement auction
 - Buyer sends a request to the central server
 - The central server forwards the request to sellers
 - Sellers bid for selling product to the buyer
 - Buyer chooses a winner of auction
 - Buyer submits a rating (binary)

- Buyer’s request

\[
V(p) = \sum_{i=1}^{m} w_i D(f_i) - P(p)
\]
Our Incentive Mechanism

- Seller bidding for buyer’s request
 - Seller’s equilibrium bidding function (Shachat & Swarthout)
 \[P^*(p) = C(p) + \int_{V'-C_H}^{V'(p)} \frac{F(x)dx}{F(V')} \]
 - The best potential gain for buyer:
 \[V'(p) = \sum_{i=1}^{m} w_i D(f_i) - C(p) \]
 - Modified equilibrium bidding function
 \[P^*(p) = C(p) + \int_{V'-C_H}^{V'(p)} \frac{F(x)dx}{F(V')} - V_D(R) \]
Our Incentive Mechanism

- Seller modeling buyer reputation
 - Social network of buyers
 ★ Each buyer has a limited number of neighbors
 ★ Neighbors are the most trustworthy buyers to this buyer
 ★ Modeling trustworthiness of buyers using a personalized approach (Zhang & Cohen 2006)
 - Reputation of buyer
 ★ The number of buyers consider one buyer as their neighbors
 \[
 R(B) = \begin{cases}
 \frac{N_B}{\theta} & \text{if } N_B < \theta; \\
 1 & \text{otherwise}.
 \end{cases}
 \]
 ★ The buyer will be considered reputable if \(R(B) \geq \delta' \)
 ★ The buyer will be considered disreputable if \(R(B) \leq \gamma' \)
Our Incentive Mechanism

- Buyer choosing winning seller
 - Winner is the seller whose bid includes the highest valuation
 - Only among trustworthy sellers
 - A personalized approach

 ★ Private reputation: \(R_{pri}(S) = \frac{\sum_{i=1}^{n} N_{pos,i}^B \lambda_i^{i-1} + 1}{\sum_{i=1}^{n} (N_{pos,i}^B + N_{neg,i}^B) \lambda_i^{i-1} + 2} \)

 ★ Public reputation: \(R_{pub}(S) = \frac{\left[\sum_{j=1}^{k} \sum_{i=1}^{n} N_{pos,i}^A \lambda_i^{i-1} Tr(A_j) \right] + 1}{\left[\sum_{j=1}^{k} \sum_{i=1}^{n} (N_{pos,i}^A + N_{neg,i}^A) \lambda_i^{i-1} Tr(A_j) \right] + 2} \)
Our Incentive Mechanism

- Buyer choosing winning seller
 - A personalized approach (Cont.)
 - Trustworthiness
 \[Tr(S) = wR_{pri}(S) + (1 - w)R_{pub}(S) \]
 - Minimum number of own ratings
 \[N_{min} = \frac{1}{2\varepsilon^2} \ln \frac{1 - \zeta}{2} \]
 - Reliability of private reputation
 \[w = \begin{cases} \frac{N_{B}^{all}}{N_{min}} & \text{if } N_{B}^{all} < N_{min}; \\ 1 & \text{otherwise.} \end{cases} \]
 - S will be considered trustworthy if \(Tr(S) \geq \delta \)
 - S will be considered untrustworthy if \(Tr(S) \leq \gamma \)
Examples: Buyer B Choosing Winning Seller

- Buyer B wants to buy a product p
- Four sellers submitted bids: S_1, S_2, S_3, S_4
- B modeling trustworthiness of sellers
 - No personal experience:

 \[
 R_{pri}(S_1|S_2|S_3|S_4) = \frac{0 + 1}{(0 + 0) + 2} = 0.5
 \]

 - Asking advice from its neighbor A

<table>
<thead>
<tr>
<th>T</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S_2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S_3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>S_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Examples: Buyer B Choosing Winning Seller

- B modeling trustworthiness of sellers (Cont.)
 - Public reputation of sellers ($\lambda = 0.9$, $Tr(A) = 0.9$)

 $$R_{pub}(S_1) = \frac{\sum_{i=4}^{5} 1 \times 0.9^{i-1} \times 0.9 + 1}{\sum_{i=1}^{5} 1 \times 0.9^{i-1} \times 0.9 + 2} = 0.39$$

 $$R_{pub}(S_2) = 0.5, \quad R_{pub}(S_3) = 0.83, \quad R_{pub}(S_4) = 0.72$$

 - Trustworthiness of sellers

 $$Tr(S_1) = 0 \times 0.5 + (1 - 0) \times 0.39 = 0.39$$

 $$Tr(S_2) = 0.5, \quad Tr(S_3) = 0.83, \quad Tr(S_4) = 0.72$$

 - Threshold $\delta = 0.7$: only S_3 and S_4 are trustworthy
Examples: Buyer B Choosing Winning Seller

- B choosing business partner
 - B’s evaluation criteria for p
 - Features
 - Delivery Time (day) | Warranty (year)
 - Weights | 0.4 | 0.6
 - Descriptive | 7 3 1 | 1 2 3
 - Numerical | 3 5 10 | 3 5 10
 - Values of their products
 - S_3 promises to deliver p with 3 year warranty in 3 days:
 $$V(p, S_3) = 0.4 \times 5 + 0.6 \times 10 - 4 = 4$$
 - S_4 promises to deliver p with 2 year warranty in 3 days: $V(p, S_4) = 1$
 - S_3 is the winner
 - S_3 keeps its promise, B submits "1" to the central server
Examples: Seller Bidding for Buyers’ Requests

- **Seller** S_5 modeling reputation of buyers
 - The number of neighborhoods for each buyer
 $$N_{B_1} = 0, \quad N_{B_2} = 1, \quad N_{B_3} = 3, \quad N_{B_4} = 4, \quad N_{B_5} = 5, \quad N_{B_6} = 5$$
 - Reputation of each buyer ($\theta = 6$)
 $$R(B_1) = 0, \quad R(B_2) = 0.17, \quad R(B_3) = 0.5$$
 $$R(B_4) = 0.67, \quad R(B_5) = 0.83, \quad R(B_6) = 0.83$$
 - B_5, B_6 are reputable; B_1, B_2 are disreputable ($\delta' = 0.8, \gamma' = 0.3$)

- **Seller’s bid for each buyer**

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Features of Product</th>
<th>Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Warranty</td>
<td>Delivery Time</td>
</tr>
<tr>
<td>B_1, B_2</td>
<td>1 year</td>
<td>1 week</td>
</tr>
<tr>
<td>B_3, B_4</td>
<td>2 years</td>
<td>3 days</td>
</tr>
<tr>
<td>B_5, B_6</td>
<td>3 years</td>
<td>1 day</td>
</tr>
</tbody>
</table>
Experiment Setting

- A marketplace operating in 20 days

- 100 buyers
 - Each 10 buyers has different numbers (2-20) of requests
 - Maximum of one request each day
 - One product in each request
 - Products have same non-price features
 - 50 of them provide unfair ratings (from 10% to 50%)
 - 5 neighbors

- 10 sellers
 - Each 2 acts dishonestly in different percentages (0% - 100%)
 - One half of them model reputation of buyers
 - Another half offer the same price
 - Have the same cost for producing products
Experimental Results

- Buyer providing fewer unfair ratings will have larger reputation value

![Graph showing number of neighborhoods over days for buyers not lying and lying 20% and 40%, with trendlines indicating decreasing values over time.](image-url)
Experimental Results

- Buyer having more requests will have larger reputation value
Experimental Results

- Buyer providing fewer unfair ratings will gain more total profit
Experimental Results

- Seller being honest more often will have larger average trust
- Seller not modeling buyers will have smaller average trust
Experimental Results

- Seller being honest more often will gain more total profit.
Experimental Results

- Seller modeling reputation of buyer will gain more total profit
Discussion and Related Work

- **Others’ incentive mechanisms**
 - **Side payment** (Jurca & Faltings; Miller et al.)
 - Offer payment to buyers providing fair ratings
 - Providing fair ratings is a Nash equilibrium
 - **Credibility** (Papaioannou & Stamoulis; Jurca & Faltings)
 - Measure agents’ credibility
 - Credibility decreases if ratings provided by participants are different

- **Our mechanism**
 - Agents learn about each other, to make effective decisions
 - Selling agents model reputation of buyers
 - Buying agents personalize decision making for their users
 - Honest agents will gain better profit for human users
 - Trust between agents and their users will be fostered
Research Issues for the Future

- How best to capture users’ preference
 - User-specific factors
 - To weight private and public reputation of sellers differently
 - Threshold δ for sellers to be considered trustworthy
 - Building user modeling values
 - General user models, stereotypes and specific user modeling features (Fleming & Cohen)

- Identity of buyers is shielded
 - To prevent sellers from cheating less reputable buyers

- More comprehensive approach for modeling buyers’ reputation
 - Considering reputation of buyers that include buyer in neighbor list