An Intelligent Discussion-Bot for Guiding Student Interactions in Threaded Discussions

Jihie Kim
Erin Shaw
Grace Chern
Donghui Feng

University of Southern California
Information Sciences Institute
Outline

• Discussion-Bot Framework
• Modeling Student Interactions in On-Line Discussions
• Modeling Student Interactions with Speech Act Classifiers
• Current Results
• Summary and Future Work
USC/DEN ISI DB Online Learning

![Screenshot of the USC/DEN ISI DB Online Learning platform](image)

Courses

<table>
<thead>
<tr>
<th>Discussions</th>
<th>Topics</th>
<th>Posts</th>
<th>Last Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSCI402x_20053</td>
<td>7</td>
<td>25</td>
<td>17 Sep 2005 23:49 (noles)</td>
</tr>
<tr>
<td>ISI Discussion Board Questions</td>
<td>2</td>
<td>9</td>
<td>16 Sep 2005 14:08 (caro/aiine)</td>
</tr>
<tr>
<td>Looking for group partners</td>
<td>40</td>
<td>99</td>
<td>16 Sep 2005 00:51 (shah)</td>
</tr>
<tr>
<td>Grader/TA Office Hour Notices</td>
<td>8</td>
<td>10</td>
<td>16 Sep 2005 12:44 (nick)</td>
</tr>
<tr>
<td>Nachos General Questions</td>
<td>12</td>
<td>27</td>
<td>11 Sep 2005 11:10 (noles)</td>
</tr>
<tr>
<td>402 Humor</td>
<td>5</td>
<td>9</td>
<td>16 Sep 2005 10:44 (shaf)</td>
</tr>
<tr>
<td>Project 1 Questions</td>
<td>36</td>
<td>101</td>
<td>10 Sep 2005 10:21 (shaf)</td>
</tr>
<tr>
<td>Project 2 Questions</td>
<td>0</td>
<td>0</td>
<td>No Posts</td>
</tr>
<tr>
<td>Project 3 Questions</td>
<td>0</td>
<td>0</td>
<td>No Posts</td>
</tr>
<tr>
<td>Project 4 Questions</td>
<td>0</td>
<td>0</td>
<td>No Posts</td>
</tr>
</tbody>
</table>

New Topics
- Reading list #3 (09/19/05 13:01)
- DNS Generation (09/18/05 13:19)
- Laptop failure (09/18/05 12:44)
- Anyone have another (09/16/05 10:44)
- Assertion failed Err... (09/14/05 20:41)

RSS Feed
- http://www.spnews.com/

Recent Topics
- [CSCI402] Discussion (09/04/05 18:05)
- [csci602] New (09/14/05 11:01)
Courses Involved

Past
• Five semesters of Undergraduate CS Operating System, USC
• Two semesters of Graduate CS Advanced Operating Systems, USC
• One semester of Psychology of Women course at the University of Massachusetts
• One semester of Engineering Negotiation for Collaborative Product Development, USC

Ongoing
• Undergraduate CS Operating System, USC
• Graduate Security Systems, USC
• Formal Languages and Automata, UC Irvine
• Undergraduate CS Operating System, Michigan Technological Univ.

~500 past students, ~150 current students
Over 7000 messages
Discussion-Bot Framework

• Modeling and assessing student interactions in online discussions
• Handling many student queries
• Guiding/scaffolding student interactions
Discussion-Bot: Responding to Student Queries

(Feng, Shaw, Kim, Hovy IUI-2006)
Modeling Discussion

Individual Messages

Response/Replies

Discussion threads
The Professor gave us 2 methods for forking threads from the main program. One was The other was to When you fork a thread where does it get created and take its 8 pages from? Do you have to calculate? If so how? Where does it store its PCReg? Any suggestions would be helpful.

read the student documentation for the Fork syscall

I am still confused. I understand it is in the same address space as the parent process, where do we allocate the 8 pages of mem for it? And how do we keep track of? … I am sure it is a simple concept that I am just missing.

If you use the first implementation...., then you'll have a hard limit on the number of threads....If you use the second implementation, you need to....

Either way, you'll need to implement the AddrSpace::NewStack() function and make sure that there is memory available.

...
Modeling and Assessing Student Interactions

• Contribution content
 ✓ • Topic of the discussion, topic coherence
 ✓ • Quality of the content (e.g. technical term uses)

• Role of each participant and his/her contribution
 e.g. person who asks many questions on a particular topic

• Interaction patterns in threads
 ✓ e.g. long vs. short discussions
 ✓ e.g. threads that reach an agreement on a topic versus threads that have unanswered queries
 e.g. effect of instructor intervention

• Interaction changes over time
 e.g. topic changes over a semester
- Discussion threads are often very short, many consisting of only one or two messages
- Student jump into programming details without understanding what is to be programmed or related technical concepts
- TA and instructors are not always available to fully guide interactions
Discussion Topic Analysis

- Automatically classify discussion *threads topics* and model *topic shifts* within each thread.

(Feng, Kim, Shaw, Hovy, AAAI-2006)
Modeling Interactions: Speech Act Categories

(Feng, Shaw, Kim, Hovy, HLT/NAACL 2006)

<table>
<thead>
<tr>
<th>Speech Act</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK</td>
<td>Acknowledge</td>
<td>Confirm or acknowledge</td>
</tr>
<tr>
<td>CANS</td>
<td>Complex Answer</td>
<td>Give answer requiring a full description of procedures, reasons, etc.</td>
</tr>
<tr>
<td>ANNO</td>
<td>Command</td>
<td>Command or announce</td>
</tr>
<tr>
<td>COMP</td>
<td>Compliment</td>
<td>Praise an argument or suggestion</td>
</tr>
<tr>
<td>CORR</td>
<td>Correct</td>
<td>Correct a wrong answer or solution</td>
</tr>
<tr>
<td>CRT</td>
<td>Criticize</td>
<td>Criticize an argument</td>
</tr>
<tr>
<td>ELAB</td>
<td>Elaborate</td>
<td>Elaborate on a previous argument or question</td>
</tr>
<tr>
<td>OBJ</td>
<td>Object</td>
<td>Object to an argument or suggestion</td>
</tr>
<tr>
<td>QUES</td>
<td>Question</td>
<td>Ask question about a specific problem</td>
</tr>
<tr>
<td>SANS</td>
<td>Simple Answer</td>
<td>Answer with a short phrase or few words</td>
</tr>
<tr>
<td>SUG</td>
<td>Suggest</td>
<td>Give advice or suggest a solution</td>
</tr>
<tr>
<td>SUP</td>
<td>Support</td>
<td>Support an argument or suggestion</td>
</tr>
</tbody>
</table>

Inspired by

(Austin, 1962; Searle, 1969)
Speech Act Categories Explored

Code 1
% agreement: 63
Kappa: 0.54

Code 2
% agreement: 92
Kappa: 0.58

Code 3
% agreement: 81
Kappa: 0.70

Name
- QUES: Question
- ANNO: Announcement
- CANS: Complex Answer
- SANS: Simple Answer
- SUG: Suggest
- ELAB: Elaborate
- CORR: Correct
- OBJ: Object
- CRT: Criticize
- SUP: Support
- ACK: Acknowledge
- COMP: Complement

Code 1

Code 2

Code 3

Code 1

Code 2

Code 3

% agreement: 81
Kappa: 0.70

% agreement: 63
Kappa: 0.54

% agreement: 92
Kappa: 0.58

Kappa = \frac{\text{Observed agreement} - \text{Chance agreement}}{\text{Total observed} - \text{Chance agreement}}
Speech Acts in a Discussion Thread

S1
I am still confused. I understand it is in the same address space as the parent process, where do we allocate the 8 pages of mem for it? And how do we keep track of? ... I am sure it is a simple concept that I am just missing.

S2
read the student documentation for the Fork syscall

S3
If you use the first implementation, then you'll have a hard limit on the number of threads...If you use the second implementation, you need to.... Either way, you'll need to implement the AddrSpace::NewStack() function and make sure that there is memory available.
Statistics of Speech Acts

<table>
<thead>
<tr>
<th>Speech Act</th>
<th>Description</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACK-SUP-COMP</td>
<td>An acknowledgement, compliment or support in response to a previous message</td>
<td>8.5</td>
</tr>
<tr>
<td>INFORM</td>
<td>Information, Command or Announcement</td>
<td>6.7</td>
</tr>
<tr>
<td>ANS-SUG</td>
<td>A simple or complex answer to a previous question. Suggestion or advice</td>
<td>37.8</td>
</tr>
<tr>
<td>CORR-OBJ</td>
<td>A correction or objection (or complaint) to/on a previous message</td>
<td>9.7</td>
</tr>
<tr>
<td>ELAB</td>
<td>An elaboration (of a previous message) or description, including elaboration of a question or an answer</td>
<td>8.1</td>
</tr>
<tr>
<td>QUES</td>
<td>A question about a problem, including question about a previous message</td>
<td>29.2</td>
</tr>
</tbody>
</table>
Automatic SA Classifiers

- Cleaning/preprocessing/transformation of raw data
- N-gram features and Linear SVM

<table>
<thead>
<tr>
<th>Category</th>
<th>1-gram</th>
<th>2-grams</th>
<th>3-grams</th>
<th>4-grams</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question Classifier (QC)</td>
<td>? [categ_wh] will do confused</td>
<td>do [categ_person] [tech_term] ? can [categ_person] is there ? thanks</td>
<td>[categ_wh] should wondering [or/and] do [categ_person] is there a [tech_term] ?</td>
<td>do [categ_person] have to do [categ_person] need to [tech_term] [tech_term] [tech..] ? is there a better does this mean that</td>
</tr>
<tr>
<td>Answer Classifier (AC)</td>
<td>yes am helps but depends</td>
<td>look at [or/and] do seems like in [tech_term] stated in</td>
<td>look at the for example , . [categ_person] should let [me/him/her/us] know not seem to</td>
<td>[categ_person] am a [tech_term] do [categ_person] have to look at the [tech_term] in the same [tech_term]</td>
</tr>
</tbody>
</table>

- Accuracy: QC – 88% and AC – 73%
Thread Classification with SA Classifiers

1) whether the given thread contains questions
2) whether the questions were answered or not.

- 70-75% of the predictions from the system were consistent with human answers (Ravi & Kim, AIED 2007)
Related Work

- Email Speech Act analysis (Carvalho and Cohen 2005)
- Dialogue analysis for intelligent tutoring systems (Graesser et al., 2001)
- Dialogue act analysis, surface cues (Samuel 2000; Hirschberg and Litman 1993)
- Topic analysis (Joachims, 1997; Liu et al., 2004; Yang et al., 2005)
- Improving Questions Answering with Speech Act Classifiers (Feng, Shaw, Kim, Hovy HLT-NAACL 2006)
- Thread summarization (Zhou and Hovy 2005)
- Predicting the likelihood of a message receiving a reply (Arguello et al., 2006)
- Computer supported collaborative argumentation (Shum 2000)
- Collaborative interaction in learning (Soller and Lesgold 2003)
Summary

• Modeling and Guiding Student Interactions in On-Line Discussions
 • Modeling student interactions with SA classifiers
 • Finding discussion threads that may need instruction attention

• Ongoing Work
 • Classifiers for other speech act types
 • Integration of interaction modeling and question answering: when to intervene
 • Developing scaffolding techniques