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Abstract

Traditional approaches to dealing with uncertainty in
planning have focused on finding plans that prevent all
potential failures. Though such plans are robust, their
creation is computationally expensive. This model of
planning does not capture the facts that 1) many times
the most likely branch of execution succeeds and 2)
even when that branch fails, replanning during execu-
tion frequently provides an alternate path to the goal.
In reality, the only failures that need to be planned
for before execution are those that are unrecoverable,
thereby preventing achievement of the goals. We have
developed a framework called Precautionary Planning
that combines interleaved planning and execution with
limited contingency planning. Precautionary Planning
adopts the view that contingency planning should be a
last resort and is not desirable when replanning is pos-
sible. In this framework, a robust initial plan is gener-
ated using a fast deterministic planner. Next, the plan
is analyzed to find potential points of failure, which are
identified as recoverable or unrecoverable. Recoverable
failures are left in the plan and are repaired through
replanning at execution time. For each unrecoverable
failure, an attempt is made to improve the chances of
recovery, by adding “precautionary” steps such as tak-
ing along extra supplies or tools that would allow re-
covery if the failure occurs.

Introduction
Uncertainty is pervasive in many of the planning prob-
lems relevant to NASA. For example, in Mars Rover op-
erations, there is inherent uncertainty about such things
as the duration of tasks, the power required, the data
storage necessary, and environmental factors that in-
fluence things like battery charging, or which scientific
tasks are possible or important.

Traditional approaches to probabilistic planning un-
der full observability involve the construction of a pol-
icy using some form of value or policy iteration (Put-
erman 1994; Boutilier, Dean, & Hanks 1999), or a
heuristically guided forward state space search such as
LAO* (Hansen & Zilberstein 2001) or LRTDP (Bonet
& Geffner 2003). One assumption that is shared by
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most planners implementing these approaches is that
all possible failures in the plan should be accounted for
at planning time. In other words, the policies are com-
plete contingency plans that account for every possible
outcome that might occur given the action descriptions.
These policies are certainly robust plans, but it can be
computationally expensive to generate them, since the
search space explodes as the number of relevant action
outcomes increases.

This work is inspired by the somewhat surprising suc-
cess of FF-rePlan in the first two International Prob-
abilistic Planning Competitions held in 2004 (Younes
et al. 2005) and 2006 (Bonet & Givan 2006). In 2004,
FF-rePlan won the competition, and though it was not
submitted to the 2006 competition, the organizers ran it
for comparisons. In both competitions, FF-rePlan was
able to cover more problems faster than the other plan-
ners. In place of dealing with uncertainty at planning
time FF-rePlan plans optimistically, considering only
the most likely outcome of each action, then monitors
execution and replans when failure occurs. However, re-
planning is useless when an unexpected action outcome
causes unrecoverable failure. For example, consider a
problem that requires driving through a remote stretch
of territory and then crossing the border into a differ-
ent country. A tire can go flat during the trip and can
only be replaced if there is a spare tire in the vehicle.
Additionally, gas stations may be far apart and may be
closed. The most optimistic plan is to just start the
journey, assuming that everything will work out. This
is exactly the plan that FF-rePlan would generate and
follow. Unrecoverable failure would occur if a tire went
flat and there was not a spare, or if fuel ran out because
a gas station was closed. In many cases, though, out-
comes like this are only unrecoverable when left until
discovered at execution time. In this example, planning
ahead by putting a spare tire in the vehicle and bringing
along a container of gas would prevent these dead-ends.

In this paper we describe an interleaved planning
and execution framework called Precautionary Plan-
ning that takes advantage of the speed of replanning,
but considers the possibility of unrecoverable failures
and attempts to avoid them. In this framework, first
a deterministic planner is used to generate a plan that



has a high probability of success. Then, a look-ahead
is performed to find action outcomes that would re-
sult in unrecoverable failures. At such points, an at-
tempt is made to improve the plan so that either the
undesirable outcome will not occur or it is possible
to recover from the outcome if it does occur. One
can think of this as a form of limited or incremen-
tal contingency planning (Dearden et al. 2002; 2003;
Meuleau & Smith 2003) since this approach starts with
an unconditional seed plan and attempts to incremen-
tally improve that plan by considering only the most
problematic action outcomes.

In the following sections we describe the details of
Precautionary Planning including the interleaved plan-
ning and execution framework, the generation of an un-
conditional seed plan, the identification of unrecover-
able failures, and the repair of those failures. Finally,
we discuss a preliminary implementation, related work
and some future directions.

Precautionary Planning
We assume that we are given a probabilistic planning
problem represented in PPDDL 1.0 (Younes et al. 2005)
where action outcomes are fully observable. Figure 1
shows a simplified version of the problem described in
the introduction expressed in PPDDL 1.0. For purposes
of this paper we do not consider either action costs or
rewards, so the objective is simply to find a plan that
has maximum probability of success.

Figure 2 and Algorithm 1 show a sketch of the top
level algorithm for Precautionary Planning. First, a de-
terministic planner is used to generate a seed plan that
reaches the goal with high probability of success. Next,
an analysis and repair cycle is performed to improve
the net probability of the plan. The analysis searches
for an outcome that is both sufficiently probable and
results in a dead end (the goal cannot be achieved from
this outcome). If possible, this outcome is repaired by
adding actions to the plan to either: 1) avoid the prob-
lematic outcome, 2) allow the outcome to be repaired,
or 3) improve overall probability of reaching the goal so
that the outcome becomes less important. The analysis
and repair cycle continues on the improved plan until
plan probability is sufficiently high, no more improve-
ment is possible, or a time limit is exceeded. At this
point, the next action in the plan is executed. If ex-
ecution results in an unplanned outcome, a new plan
must be generated to reach the goal from this unex-
pected state. Analysis and repair is then performed on
this new plan before execution of its first step. Alterna-
tively, if execution results in an expected outcome, the
precautionary planner can continue on with the remain-
der of the existing plan. However, even in this case, we
perform analysis and repair of the remainder of the plan
before executing another step. We do this because 1)
the probability of subsequent outcomes in the remain-
der of the plan may have changed (increased) due to
the outcome of the step just executed, and 2) the pre-
vious analysis and repair cycle may have been limited

Domain description
(define (domain treacherous-drive)

...
(:action get-tire
:precondition (at-start)
:effect (have-tire))

(:action get-passport
:precondition (at-start)
:effect (have-passport))

(:action drive-from-start
:precondition (at-start)
:effect (and (not (at-start))
(probabilistic 3/5 (at-end)

2/5 (and (flat-tire)
(along-route)))))

(:action replace-tire
:precondition (flat-tire)
:effect (not (flat-tire) (tire-replaced))

(:action drive-from-along-route
:precondition (and (along-route)

(tire-replaced))
:effect (and (not (along-route)) (at-end)))

(:action cross-border
:precondition (and (at-end)(have-passport))
:effect (border-crosssed))

)
Problem description
(define (problem drive-problem)

(:domain treacherous-drive)
(:init (at-start))
(:goal (border-crossed)))

Figure 1: A probabilistic domain and problem ex-
pressed in PPDDL1.0.

by time.
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Figure 2: Basic outline of Precautionary Planning
framework.

Seed Plan Generation
Though the domains we work with are probabilistic, our
framework uses a fast, deterministic planner to generate
the seed plan. This requires conversion of the proba-
bilistic domain to a deterministic domain. Since a seed
plan with high probability of success is desired, pref-
erence must be given to high probability outcomes in
the conversion. Algorithm 2 shows the method of con-
verting a domain and problem written in PPDDL1.0



Algorithm 1
planning/execution algorithm
Precautionary Planner(problem)

1: PDDL-problem ← Cnvrt-to-Determ(problem)
2: plan ← Determ-Planner(PDDL-problem)
3: repeat
4: Repair-Failures(plan, PDDL-problem)
5: cur-state ← Execute-Step(plan)
6: if unplanned outcome then
7: init-cond(PDDL-problem) ← cur-state
8: plan ← Determ-Planner(PDDL-problem)
9: end if

10: until plan is null

(Younes et al. 2005) to PDDL2.21 (Edelkamp & Hoff-
man 2004).

Algorithm 2
function Cnvrt-To-Determ(problem)

Part A: Convert domain
1: PDDL-domain ← determ parts of Do-

main(problem)
2: for all prob actions Ap in Domain(problem) do
3: total prob ← 0
4: for all prob outcomes i of A do
5: total prob ← total prob + pr(i)
6: Ad

i ← determ copy Ap with only outcome i
7: Set-Cost(Ad

i , -1 ∗ log(pr(i))
8: if i is conditional then
9: Add-Precond(Ai, condition of i)

10: end if
11: Add-Action(PDDL-domain, Ai)
12: end for
13: if total prob < 1 then
14: Ad

j ← determ copy Ap when no prob outcome
occurs

15: Set-Cost(Ad
j , -1 ∗ log(1 - total prob))

16: Add-Action(PDDL-domain, Aj)
17: end if
18: end for
Part B: Convert problem
1: PDDL-problem ← Problem(problem)
2: Set-Initial-Cost(PDDL-problem, 0)
3: Set-Metric(PDDL-problem, minimize cost)

To convert the domain, we use an approach similar
to that of Jiménez, Coles, & Smith (2006); each prob-
abilistic action is broken into several deterministic ac-
tions, one for each probabilistic outcome (loop starting
in part A, line 2). To force the deterministic planner
to find a high probability plan, the plan metric fea-
ture of PDDL2.2 is used. For each new action that is
created, the probability of its outcome is converted to

1PDDL2.2 is used because it introduces the concept of a
metric (objective function) for ranking plans.

an additive cost equal to the negative logarithm of the
probability (part A, lines 7, 15). More precisely, if A
is a probabilistic action with outcomes O1, . . . , Ok and
probabilities P1, . . . , Pk, we create deterministic actions
A1, . . . , Ak each having the same conditions as A, effects
of O1, . . . , Ok respectively, and costs Ci = − log Pi. The
problem is then converted by initializing cost to 0 and
setting the plan metric as minimize cost (part B, lines
2, 3). Figure 3 shows the converted form of the action
drive-from-start and the converted problem for the
domain and problem in Figure 1.

Converted action drive-from-start
(:action drive-from-start-1
:precondition (at-start)
:effect (and (not (at-start) (at-end)

(increase (cost) 0.222)))

(:action drive-from-start-2
:precondition (at-start)
:effect (and (not (at-start) (along-route)

(increase (cost) 0.397)))

Converted problem description
(define (problem drive-problem)

(:domain treacherous-drive)
(:init (at-start) (= (cost) 0))
(:goal (border-crossed))
(:metric minimize (cost)))

Figure 3: Parts of the probabilistic domain and problem
converted to PDDL2.2.

Recognizing Unrecoverable Outcomes
Once the seed plan is generated, actions that could
cause unrecoverable failure must be recognized. Given
an action in the plan, it must first be mapped back
to its counterpart in the probabilistic domain to find
other possible outcomes. A determination must then
be made as to whether any of the alternate outcomes
could cause unrecoverable failure. A simple way to test
for this is to change the initial conditions of the problem
to represent the state of the world when an alternate
outcome occurs and then call the deterministic planner.
If a plan cannot be found, the failure is unrecoverable.
If a plan does exist, it is probabilistic, like the seed plan,
and so must also be analyzed for unrecoverable failures.
This approach accurately locates dead ends, but incurs
overhead by calling the planner repeatedly for each al-
ternative outcome in the plan. As a result, the expense
of this approach gets out of hand as the number of un-
certain outcomes in the plan increases. A potentially
faster alternative is to construct a plan graph and use
it for reachability analysis. By propagating probabil-
ity estimates through the plan graph (Bryce & Smith
2006), we can estimate the probability of reaching the
goal after the alternate outcome occurs. The disadvan-
tage of this approach is that plan graph reachability is
optimistic and could lead us to believe that an outcome
is recoverable when it is not.



Alternatively, in some cases it may be possible to
do domain analysis and prove in advance that certain
action outcomes are reversible – that is, a sequence of
actions exists that can be executed to return the world
to the state before the action in question was executed.
In such cases, the outcome is recoverable, and it is not
be necessary to run the planner to determine this. Once
the world is returned to the previous state, the action
can be executed again. If the desired outcome occurs,
the plan can continue. Otherwise the reversal steps can
be repeated as long as the alternate outcome occurs.

Ultimately, we believe that a combination of these
three techniques will be required to efficiently assess
action outcomes. First, one should check an outcome
to see if it is reversible. if not, a plan graph could be
used to see if the outcome is unrecoverable or has low
probability of recovery. Finally one could invoke the
planner on high probability outcomes not identified as
either reversible or unrecoverable by the previous two
techniques. This limits the expense of the planner to
those outcomes that are relatively important and still
suspect.

Repairing Unrecoverable Outcomes

Once an action with an unrecoverable outcome is identi-
fied, we want to repair the plan so that the overall prob-
ability of success is improved. There are potentially
four different ways in which this can be accomplished:
1) avoid the problematic outcome through confronta-
tion, 2) allow the outcome to be repaired by adding
precautionary steps to the plan prior to the problematic
action, 3) improve overall probability of reaching the
goal by incorporating conformant actions, or 4) aban-
doning the plan and seeking another seed plan that is
more repairable. This section discusses these four op-
tion in detail.

Confrontation
Sometimes the probabilistic outcomes of an action
are contingent upon different conditions. For exam-
ple, in the travel problem it might be that for the
drive-from-start action, flat-tire can only occur
when the tires are old. Confrontation of this condition
would allow us to avoid flat-tire by always ensuring
we have new tires before beginning drive-from-start.
Let As be our action in the seed plan with unrecover-
able outcome Ou and let Cu be the condition for that
outcome. We want to modify the existing seed plan
to force achievement of the negation of this condition,
so that the bad outcome Ou can not occur. We can
trick a deterministic planner into doing this as shown
in Algorithm 3. We create a new version of this action
A′

s which has all the original preconditions and effects
of As (line 3) but also has the additional precondition
¬Cu (line 4) and a new unique effect (line 5). We force
A′

s into the plan by adding this unique effect to the goal
(line 6). We add A′

s to the domain (line 7) and solve the
planning problem again. If a new plan is found, and the

probability of this new plan is greater than that of the
seed plan, the new plan replaces the seed plan, avoiding
the unrecoverable outcome.2

Algorithm 3
function Confrontation-Repair(plan,
PDDL-problem)

1: As ← action in plan that can cause unrecoverable
failure

2: Cu ← condition under which unrecoverable out-
come of A occurs

3: A′
s ← copy of As

4: Add-Precondition(A′
s, Negate(Cu))

5: Add-Effect(A′
s, unique-effect)

6: Add-Goal(PDDL-problem, unique-effect)
7: Add-Action(PDDL-problem, A′

s)
8: plan ← Determ-Planner(PDDL-problem)

Precautionary Steps
Another way to resolve an unrecoverable outcome is to
insert precautionary actions into the plan that improve
the probability of recovery. In the example problem,
we can avoid unrecoverable failure when the tire goes
flat by including a precautionary step of get-tire at
the beginning of the plan. Recovery is then possible
by executing fix-tire and drive-from-along-route
when drive-from-start results in a flat tire.

As with confrontation, we can trick a deterministic
planner into inserting precautionary actions into a plan.
Algorithm 4 gives a sketch of the process. Let A be our
action with unrecoverable outcome Ou and let As and
Au be the deterministic versions of A corresponding to
the desired and unrecoverable outcomes of A. The ba-
sic idea is to force the deterministic planner to find a
plan that includes Au but does not destroy anything
that is needed to reach the goal when A has the desired
outcome Os. To facilitate this, the seed plan is divided
into three parts: the prefix (containing all actions pre-
ceding As plus the initial world state), As, and the suffix
(containing all actions following As plus the goal state).
We create a new deterministic action A′

u that includes
all the preconditions and effects of Au (line 2). We also
add a unique effect to A′

u that is then added to the goal
to force A′

u into the plan (line 3, 4). The suffix of the
seed plan Π is protected by identifying any conditions
necessary for the suffix that are fulfilled in the prefix

2There is a more efficient, but more complicated way
of doing confrontation that avoids having the planner re-
generate the plan suffix (those actions following As in the
plan). Doing this requires that we analyze the causal struc-
ture of the plan suffix to find the set of conditions Csuffix that
are satisfied by actions occurring in the plan prefix (those
actions preceding As in the plan). If Cs are the precon-
ditions of As we instead solve a new problem with goals
G′ = Cs ∪ ¬Cu ∪ Csuffix. If a plan is found, it serves as a
replacement for the prefix of the seed plan.



(lines 5-6). This requires analyzing the causal struc-
ture of the suffix to determine which actions in the seed
plan are used to satisfy the conditions in the suffix. All
such conditions are added as preconditions of A′

u, en-
suring that the original suffix can execute. Then, A′

u is
added to the domain (line 8). Figure 4 shows A′

u for
the example problem. Finally, the newly constructed
planning problem is passed to the deterministic plan-
ner (line 9). If a plan is returned, it replaces Π and the
suffix of Π is added to it as a branch (lines 10-12) for the
successful outcome Os of A. If a plan is not returned,
a truly unrecoverable outcome has been found.

Algorithm 4
function Precautionary-Repair(plan, PDDL-problem)

1: A ← action in plan that can cause unrecoverable
failure

2: A′
u ← copy of Au, the version of A with the unre-

coverable outcome
3: Add-Effect(A′

u, unique-effect)
4: Add-Goal(PDDL-problem, unique-effect)
5: for all preconditions pc in plansuffix supported by

planprefix do
6: Add-Precondition(A′

u, pc)
7: end for
8: Add-Action(PDDL-problem, A′

u)
9: new-plan ← Determ-Planner(PDDL-problem)

10: branch ← plansuffix

11: Add branch to new-plan after A′
u

12: plan ← new-plan

(:action drive-from-start-2-include
:precondition ((have-passport) (at-start))
:effect (and (not (at-start) (along-route)

(unique-effect-1)))

Figure 4: Action A′
u that is included in a plan to repair

the unrecoverable outcome of a flat tire. The condi-
tion have-passport must be added as a precondition
because it is needed by the suffix.

Figure 5 shows (a) the seed plan, (b) the new plan
that is generated to repair the problem, and (c) the
merged contingency plan for our example problem.

Conformant Solution
Sometimes it is possible to add steps to a plan that
reach the goal through different means and thereby in-
crease the overall probability of reaching the goal. In
our example, suppose that the real objective was to
deliver a document across the border. One way of in-
creasing the chance of success would be to send a copy of
the document in a separate vehicle. This is essentially a
conformant rather than a contingent means of increas-
ing the chance of success of a plan. As it turns out,
conformant plans can result naturally when we apply

Get passport

Drive

Cross border

(a)

Get passport

Get tire

Drive

Replace tire

Drive

Cross border

(b)

Get passport

Get tire

Drive

Replace tire

Drive

Cross border

(c)

Cross border

success

failure

Figure 5: (a) Seed plan. (b) Repair plan. (c) Merging
of suffix of seed plan with repair plan.

Algorithm 4. This is the case when the deterministic
planner finds a plan to achieve the original goals, but
the action A′

u (which was forced to be in the plan) is
not on the critical path for any of those goals. In other
words, the only purpose of A′

u is to achieve the unique
effect that we added to the goal, and the resulting plan
would still achieve the original goals if A′

u were removed
from the plan. The reason this plan was not generated
initially is because on its own it has a lower probabil-
ity of success than the seed plan. However, inclusion
of both the high probability seed plan and lower prob-
ability plan increases the overall probability of success.
Since A′

u ensures the suffix of the seed plan can be ex-
ecuted, the two plans can be merged. More precisely,
if Π′ is the new plan, we can replace A′

u in Π′ with A
and add the suffix of the original seed plan to Π′, but
condition it on the successful outcome Os of A. This
is basically the same as the plan merging step for Pre-
cautionary Planning. There is, however, one additional
complication: some of the conformant planning steps
might interfere with steps in the suffix of the seed plan.
Thus the final step in the plan merging process is to
condition any such steps on having an outcome for A
other than Os. This process is similar to the condition-
ing process for threat resolution in POCL conditional
planning described in Peot & Smith (1992).

Truly Unrecoverable Outcomes
This work is based on the observation that many fail-
ures are recoverable when planned for ahead of time.
Though this is often the case, it is not always true. It
is possible that adding the restrictions of Algorithms 3
and 4 to the planning problem prevents the generation
of a plan. This, then, indicates a truly unrecoverable
outcome. However, it does not necessarily mean that
the problem is unsolvable. It may simply be that the
seed plan should be abandoned and replaced with a new
plan that has a lower probability of success on its own,
but can be repaired to raise the overall probability to
an acceptable level. To find the new plan, either the
domain would have to be modified to prevent regen-
eration of the seed plan (this could involve removal of
the action causing unrecoverable failure) or the deter-
ministic planner would need to generate a succession of
plans rather than a single plan. In either case, a new



seed plan should be considered. Of course it may ulti-
mately turn out that no other seed plan is any better,
and that the the original seed plan with unrecoverable
outcomes is the highest probability solution. As a re-
sult, this entire process should be considered as a search
through a space of probabilistic plans at various stages
of improvement.

Searching for Unrecoverable Outcomes
So far, we have assumed that, given a seed plan, all
action outcomes are considered for repair. For larger
problems this is generally not practical. Instead, we
need to focus the improvement process on those out-
comes that are likely to make the most difference in
improving plan probability. There are several possible
strategies for doing this, but we will focus here on a
progressive greedy approach. This approach scans the
plan starting at the beginning and progresses forward
in time. For each action A with an alternative (un-
planned) outcome O we consider the probability that
O will actually occur. This is the probability of the
outcome O given that A is executed, times the prob-
ability that A is actually executed (i.e. the execution
makes it to A without failure or without taking another
branch). Formally:

P (O) = P (O|A)P (A)

If this probability exceeds a given probability threshold
T then an attempt is made to repair the outcome.

In addition, it may be useful to place a horizon limit
on the search under the assumption that one does not
need to prepare too far in advance for many uncertain
outcomes. A more sophisticated alternative is to use
some sort of discount factor to discount actions further
in the future. This approach tends to focus the repair
effort on the most time critical and highest probability
outcomes on the assumption that later outcomes are
less likely and less pressing.

Discussion
Status
Although we have developed a preliminary implemen-
tation of the techniques described in this paper, our im-
plementation is far from complete. We initially chose
to use the LPG-TD planner of Gerevini, Saetti, & Se-
rina (2006) for our deterministic planner because it can
optimize plans based on a metric, which is important
for generating high probability seed plans and precau-
tionary repairs. Our implementation converts PPDDL
domains to PDDL domains as described in Algorithm
2. It then uses LPG-TD to generate a seed plan. A
progressive greedy scan of the seed plan is done to ex-
amine the alternative outcomes for actions in the seed
plan. An outcome is examined if the probability that
the outcome will occur exceeds a given threshold. In
this case, LPG-TD is called again to determine if an
alternate plan to the goal exists for this outcome. If a
plan is not found, then an unrecoverable outcome has

been found and Algorithm 4 is used to try to find a pre-
cautionary or conformant solution that avoids the dead
end. When LPG-TD returns a plan, this plan is used as
a basis for the repair. If the probability of reaching the
goal with this new plan is less than the threshold, that
plan is recursively scanned. A horizon is used to limit
the number of steps scanned in the plan and the number
of levels of recursion during the repair algorithm. Once
the plan has been analyzed up to the horizon, execution
begins. After each step has executed, the analysis step
is repeated, taking into account the new state of the
world.

There are a number of deficiencies in our implemen-
tation. First, it does not yet include the ability to do
confrontation as described in Algorithm 3, and we rec-
ognize that this is critical in some situations. Second,
we call LPG-DT in order to determine whether or not
each action outcome is unrecoverable. As we noted ear-
lier, this becomes expensive as the number of actions in
the plan with uncertain outcomes increases. We believe
that recognition of reversible outcomes and use of plan
graphs to recognize unrecoverable outcomes is essential
to making this process efficient and practical. Despite
these deficiencies, we have attempted some initial tests
on simple problems from the first two probabilistic plan-
ning competitions. In most of these domains, actions
are reversible, so run-time replanning alone is sufficient,
and precautionary planning provides no additional ben-
efit. In the few domains where unrecoverable outcomes
are possible, precautionary planning can help – we have
been able to achieve the goal in a larger percentage of
problems than is possible with only run-time replan-
ning. However, because of our reliance on LPG-DT to
examine each outcome, our current implementation is
slow. We are currently working on remedying these de-
ficiencies.

Related Work
As we mentioned in the introduction, this work is in-
spired by the somewhat surprising success of FF-rePlan
in the probabilistic tracks of the 2004 and 2006 Inter-
national Planning Competitions (Younes et al. 2005;
Bonet & Givan 2006). FF-rePlan plans optimistically,
considering only the most likely effect of each action,
then monitors execution and replans when failure oc-
curs. Because FF-rePlan considers only the most likely
outcome for each action, there may be many lower prob-
ability plans that it cannot find. Furthermore, FF-
rePlan makes no attempt to optimize – that is, it does
not consider action probabilities in its search for plans.
It may therefore settle for a low probability plan when
a higher probability plan is readily available.

Concurrent with our work, Jiménez, Coles, & Smith
(2006) also recognized that it was possible to trick a
deterministic planner like LPG into searching for un-
conditional plans of high probability by 1) including a
separate deterministic action for each possible proba-
bilistic action outcome, and 2) assigning a cost to each
such deterministic action equal to the negative loga-



rithm of the outcome probability. They have shown
that this alone results in better plans than those pro-
duced by FF-rePlan.

Our incremental improvement approach to Precau-
tionary Planning builds upon the Just in Case (JIC)
scheduling work described in (Drummond, Bresina, &
Swanson 1994) and the Incremental Contingency Plan-
ning (ICP) work described in (Dearden et al. 2003).
JIC scheduling starts by constructing an unconditional
seed schedule, then analyzes the schedule to determine
where it might fail. For the most probable failures,
it attempts to construct a new schedule (conditional
branch) to cover this failure. The process is anytime
in nature and incrementally improves the schedule as
long as time and computational resources permit. ICP
takes a similar approach to planning under uncertainty.
A seed plan is first constructed using a deterministic
planner. Monte Carlo simulation is then used to iden-
tify possible failure points. Heuristics are used to de-
cide which failure point to consider, and a deterministic
planner is used to construct a conditional branch for the
failure. Again, the process repeats as long as time and
computational resources permit. It is worth noting that
both of these approaches were developed to deal with
more difficult problems involving oversubscription and
goal utilities, and uncertainty in action duration and
resource usage. As a result, the heuristics and meth-
ods for choosing branch points and branch conditions
are considerably more complicated than what we have
considered here. One difference between Precaution-
ary Planning and the JIC and ICP work is that nei-
ther of those techniques were capable of inserting pre-
cautionary steps – i.e. modifying that portion of the
plan or schedule prior to the branch point. This turned
out to be a significant weakness in the application of
ICP to practical problems. However, the most impor-
tant distinction between Precautionary Planning and
previous incremental approaches is our combination of
incremental improvement with replanning. This com-
bination fundamentally changes the focus of the plan
improvement effort so as to concentrate on only those
outcomes that lead to dead ends. This makes a big dif-
ference in the heuristics and search strategy, and in the
robustness of the resulting system to uncertainty.

Finally, the CIRCA system (Musliner, Durfee, &
Shin 1993) also has some similarities with Precaution-
ary Planning. Basically, CIRCA is a real time control
system that attempts to look ahead and avoid any pos-
sibility of bad outcomes. In effect, it tries to prove that
the next action that it takes will not get it into trou-
ble somewhere in the future. While it will attempt to
achieve goals, this is secondary to avoiding bad out-
comes.

Future Work
Continuous Uncertainty A primary motivation for
the original work on Incremental Contingency Planning
(Bresina et al. 2002; Dearden et al. 2003) was the fact
that much of the uncertainty in practical domains in-

volves uncertainty in the duration and resource usage
of actions – in other words, uncertainty about contin-
uous quantities. For problems like this, uncertain ac-
tions do not have a finite set of discrete outcomes, so
traditional MDP approaches are not adequate without
first discretizing the uncertain outcomes. Although this
paper has been focused on traditional planning under
uncertainty where actions have discrete uncertain out-
comes, the general technique is aimed at a broader class
of problems involving uncertainty in continuous quan-
tities. As in the previous work on incremental contin-
gency planning, an initial seed plan would be generated
using the expected behavior of the actions. Given a seed
plan and an action with an uncertain continuous out-
come, the challenging problems are 1) to figure out the
range of outcomes that are likely to cause the current
seed plan to fail, and 2) determine whether the plan can
be repaired for this range of outcomes. In essence, we
want to find the subset of the range of outcomes that
are unrecoverable (or have low probability of recovery)
and apply the techniques of this paper to further re-
duce the range of those outcomes. In other words, for
continuous uncertainty the real objective is to reduce
the range and probability of unrecoverable outcomes,
rather than to completely eliminate them.

Oversubscription and Goal Values Another issue
that our framework does not currently address is that
of oversubscription and goal values. In our example we
had the simple goal of being across the border – there
was no value associated with this goal, and no costs
associated with actions. If the value of the goal were
low, and the cost of getting the spare tire were high, the
optimal plan might be to abandon the goal if a flat tire
occurs. Unfortunately, when actions have costs, and
goals have values, our simple approach of tricking a de-
terministic planner into finding good (high probability)
plans no longer works. The problem is that each action
outcome now has a cost, a probability of success, and
some expected benefit. The trouble is that 1) it is not
clear how to assign a meaningful benefit (distribute util-
ity) to individual actions, and 2) it is not clear how to
combine these quantities into a single “cost” that can
be used for optimization. In order to deal with costs
and utilities one could start with a more sophisticated
planner that is capable of dealing with goal utilities and
oversubscription problems. However, in this case it is
not clear how to take probability into account. One
could potentially penalize low probability outcomes by
adding a cost to each deterministic instance of the ac-
tion based on the negative logarithm of the outcome
probability. Using such an approach, a deterministic
oversubscription planner could be used to generate seed
plans.

Once a seed plan is generated, there is a second prob-
lem of deciding which outcomes to repair. In this case,
one is not just concerned with whether or not the goal
can be reached from an action outcome, but with how
much utility will be lost if the outcome occurs. Gener-



ally, more complex techniques such as those described
in Dearden et al. (2003) may be required in this case.

Conclusion
One can argue that the primary reason FF-rePlan did
so well in the probabilistic planning competitions is that
the domains and problems had very few dead-end out-
comes – that is, outcomes where it was no longer possi-
ble to reach the goal(s). Although there is much truth
to this observation, we believe there is still an important
lesson to be learned; many action outcomes can be dealt
with efficiently by run-time replanning. It is only those
outcomes that would lead to failure that a planner re-
ally needs to worry about ahead of time. Thus, we think
it is a mistake to consider either contingency planning
or replanning in isolation. Full contingency planning
(policy generation) is too difficult and too slow, and
replanning alone is not robust enough. Any system ca-
pable of dealing with significant problems will need a
combination of the two approaches – replanning to deal
with all the annoying but relatively harmless outcomes,
and contingency planning to deal with those outcomes
that would result in failure.

We have presented a framework for dealing with plan-
ning under uncertainty that interleaves planning and
execution. We assume a model where actions may
have probabilistic outcomes, the execution agent can
observe the state of the world after each probabilistic
action completes, and there is time for replanning af-
ter such observations are made. Under our framework,
contingency planning is done to prevent unrecoverable
failures, and replanning is done when recoverable fail-
ure occurs. This is different from both contingency
planning and replanning. In contingency planning, at-
tempts are made to prevent all failure, whereas we only
concern ourselves with unrecoverable failure. In replan-
ning, a dead end occurs when an attempt is made to
replan after an unrecoverable failure. Our planning
framework does contingency planning to avoid this. An-
other key to our framework is that we use a fast deter-
ministic planner for plan generation. We have devel-
oped algorithms for using a deterministic planner to 1)
generate plans that have a high probability of success
and 2) to insert precautionary actions and generate con-
tingency branches for unrecoverable action outcomes.
We have also described several heuristics for discover-
ing unrecoverable outcomes.
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