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Abstract 

We are exposed to physical and virtual systems every 
day. They consist of computers, PDAs, wireless devices 
and increasingly, robots. Each provides services to 
individual or groups of users whether they are local or 
remote to the system. Services offered by these systems 
may be useful beyond these users to others, however 
connecting many of these systems to more users 
presents a challenging problem. The primary goal of the 
research presented in this paper is to demonstrate a 
scalable approach for connecting multiple users to the 
services provided by multiple systems. Such an 
approach must be simple, robust and general to contend 
with the heterogeneous capabilities of the services. An 
infrastructure is presented that addresses these 
scalability requirements and establishes the foundation 
for contending with heterogeneous services. 
Additionally, it allows services to be linked to form 
higher-level abstractions. The infrastructure is 
demonstrated in simulation on several similar multi-
robot systems with multiple users. The results propose it 
as a solution for large-scale human-system interaction. 

1. Introduction 

The issue of scalability in human-system interaction 
applies to both the human and the system ends. How do 
many people interact with many systems? A general 
solution for interacting with a small number or single 
systems is to maintain interaction infrastructures 
dedicated to a specific set of users. Such approaches 
tend to be application-specific and are scalable only in 
their local operating environment. There are many 
issues to address if the infrastructure is to allow users 
outside of these bounds, as well as extending the 
number of managed systems. The main issues concern 
the scalability of the infrastructure, the heterogeneity of 
the information provided by other systems, and the user 
interfaces required for meaningful interaction with these 
systems. There is a large amount of diversity in each of 
these issues considering the user can have varying levels 
of interaction with a system. For example, a user tele-
operating a robot requires a more specific user interface 
and higher communication bandwidth than a 
supervisory user of a multi-robot system. Developing an 

infrastructure that can address these issues and their 
diversities is the focus of this paper. 

A system is an entity that provides services  
(assistance/information) to a user. A service is thus a 
system resource. A user is defined as a human or system 
requiring the service. The requirement of connecting 
large numbers of systems to large numbers of users 
demands a scalable and simple solution. It is also 
beneficial for existing systems to undergo minimal 
modification to allow them to interface with such a 
solution. The approach must therefore be able to: 

- scale to large numbers of users, 

- scale to large numbers of systems and their 
services, 

- manage the diversity of the information provided 
by the services, and 

- allow for the variety of user interfaces required for 
the services. 

The infrastructure presented in this paper has been 
developed under consideration of all issues but so far 
primarily addresses the first two. Additionally, it 
extends the usability of the infrastructure allowing 
services to be linked to form higher-level abstractions. 
This is beneficial for sequential and concurrent control 
of multiple services and adds more flexibility to the 
infrastructure. Sequential control allows one service to 
provide an event-based trigger to initiate another. 
Concurrent control can be provided in some instances 
when the services have semantically similar 
information: one service provides the input to another 
for their concurrent operation. An example is 
demonstrated in this paper where an object-tracking 
service provides the dynamic location of a robot to a 
package delivery robot that uses it as a navigation goal.  

The following section provides a review of the research 
in related areas of human-system interaction. Section 3 
presents the infrastructure. Section 4 presents 
experimental results that demonstrate some of the 
capabilities of the infrastructure. Section 5 provides a 
discussion of the infrastructure components. Section 6 
provides conclusions based on the experimental results 
in terms of the requirements of the infrastructure 



described above. Section 7 identifies the goals of the 
next development stage of the infrastructure.  

2. Related Work 

Considering a system can consist of physical entities 
(such as robots or embedded devices) and virtual 
entities (such as the services provided by computer 
programs), human-system interaction covers large areas 
of research. In [1], a taxonomy is presented categorising 
human and intelligent system research. The concept of 
an intelligent system is a system that allows for user 
interaction (e.g. tele-robotics). The categories include 
the application of the research, the research approach, 
system autonomy, interaction distance and interaction 
media with each category divided into subcategories. 
Many references are grouped under these categories, 
which illustrates the vastness of the field. Another axis 
that can be added to the classifications is the scalability 
of the approaches in terms of users and systems. 

This section classifies human-system architectures in 
terms of their scalability assuming a system consists of 
a set of nodes that provide a set of services to users. 
These classifications are shown in Table 1 and are 
discussed in the following sections that separate them 
into single (non-shaded table entries) and multi-user 
architectures (shaded table entries). 

Table 1: User/system scalability classification 

 Users Systems 
1 one one 
2 one multiple 
3 multiple one 
4 multiple multiple 

 

Single-user System Architectures 

There are many examples relating to the entries in the 
table above. The issues concerning scalability are 
highlighted when examining these examples. An 
important issue that affects the scalability of an 
approach is how tightly coupled the users are with the 
system. This concerns access to system resources and 
levels of control over system services. Single-user 
systems allow the user full access to the system services 
and control. Scaling these to more users can be difficult 
due to these aspects (such as communication 
bandwidth) having to be shared. Tele-operation of a 
single system node is an example where this is 
highlighted [12]. Multi-robot research also provides 
examples where multiple robots can be controlled 
individually or as a group by a single user 
[2][3][11][16]. In each of these systems, the nodes have 
a certain degree of autonomy and the user has either 
high level group control, or low level individual control. 

This indicates that the higher the number of users an 
interaction architecture has to deal with, the looser the 
coupling between users and systems.  

The concept of a single user for multiple systems 
indicates a hierarchical command structure where there 
is a top-level entity that controls the systems below their 
level.  

Multi-user System Architectures 

Multi-user and multi-service systems are forced to 
address scalability, system resource allocation and 
control. A key concern is how to control the information 
and communication pathways for multiple users. 
Common approaches involve using multi-agent 
architectures [6][10][14][15] and the Internet.  

Multi-agent architectures offer services to users with 
suitable access to the systems they serve. Examples 
include interactive workspaces [7][13] which consist of 
dedicated environments with embedded devices 
providing services for users. The users generally must 
be in the environment to access the services.  

Multi-user/multi-robot architectures are demonstrated 
by [5][17]. These systems use the Internet as a 
communication medium for commanding robots from 
remote locations.  

Many of the examples presented in this section are 
scalable only in their local operating environment or 
application domain. The infrastructure presented in the 
next section is intended to operate beyond these limits, 
as well as contending with the diversity of coupling and 
resource sharing required by individual systems. 

3. Infrastructure 

The infrastructure we have developed is shown in 
Figure 1 as the shaded boxes. It is a client/server 
method using UDP as the communication protocol. 
Each user has a client that provides an interface with the 
infrastructure. Similarly, the system client acts as the 
system interface to the infrastructure. The Service List 
Server manages the initial contact between users and 
systems. Once a user has selected their desired services, 
the server connects the associated user's and system's 
clients, then removes itself from their communication 
loop.  

To be scalable, the infrastructure must be general, 
simple and initially provide a loose coupling between 
users and systems. It has to be general to manage the 
heterogeneous services provided by unknown systems. 
It has to be simple to reduce any bottlenecks that can 
occur, particularly by the communication paths. It also 
must require as little non-invasive addition as possible 
to existing systems for it to be accepted. These goals 
constitute the philosophy for infrastructure design. For 



the implementation described in this paper, the 
following assumptions are made with the presumption 
that those that present limitations will be addressed in 
subsequent development phases: 

1. The systems already exist. 

2. The contact details (i.e. host and port number) of 
the server are known by system clients. 

3. The user interfaces for each system are simple and 
have low functionality. 

4. Each system can provide multiple services, but only 
one can be linked to a user for a session.  

5. The semantics of the interaction are understood by 
the user and the system so that system responses to 
user requests are what the user expects.  

6. System managers are motivated to have their 
system's services available to users.  

The Infrastructure's Sequence of Operation 

This section details the steps for using the infrastructure. 

Step 1. Generating the global service list 

The first step for using the infrastructure is to compile 
the complete list of services offered by the systems. Any 
time a system connects to the server, its client sends its 
list of services. The Service List Server stores these 
descriptions along with the system clients' contact 
details.  

Step 2. Presenting the list to the user client 

Whenever a user client connects to the server, the server 
requests the service lists from all known system clients. 
This ensures all l isted services are current and valid. 
The global list is then sent to the requesting user client1. 
The list is presented to the user as a menu along with an 

                                                           
1 In future infrastructure development, this will refresh all user clients' 
lists. 

additional option of combining compatible services. 
Service compatibility must fulfil two criteria. First, the 
services must be semantically compatible so the shared 
information has a uniform meaning. Second, one service 
must be a data provider for the other. This is established 
by labeling each service as a data provider or a 
command service as part of the service descriptions.  

Step 3. Selecting services 

When a user selects a service, the user client sends the 
request to the server which forwards it to the relevant 
system along with contact details for the user client. The 
server then disconnects from both the user's and 
system's clients allowing direct and higher bandwidth 
between them. 

Step 4. Using the service 

The user is presented with a new menu of actions for the 
requested service. These include terminating the service 
and establishing a new connection to the server 
(transparent to the user), exiting from the infrastructure, 
or starting the service. Once the user selects the option 
for starting the service, a signal is sent to the system 
client to start executing the service. In future 
infrastructure development, this will also establish a 
service-specific user interface. The user interacts with 
the selected system until the service completes. 

4. Validating the Operation of the 
Infrastructure 

The main goals of the infrastructure are to allow 
heterogeneous services, large numbers of users and 
systems, and to provide a mechanism for linking 
services, if appropriate, with little overhead to existing 
systems. To illustrate how the infrastructure achieves 
many of these goals, two simulation experiments are 
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Figure 1: The infrastructure for connecting multiple users to multiple system services 
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carried out using the Player/Stage2 platform [9]. The 
Player platform provides a library of device software for 
developing Pioneer 2 mobile robot applications. The 
Stage simulator interfaces with the Player software to 
provide valid real system operation of Player devices. It 
also allows multiple robots to be simulated in user-
designed environments in real or accelerated time. In 
our experiments, the environment is a simulated large 
room. 

The systems used in the experiments are based on the 
Murdoch [8] task allocation system. Murdoch uses an 
auction-based approach to task allocation. When a task 
is to be assigned, Murdoch holds a first-price auction 
and each available robot submits a bid that represents its 
fitness for the task; the fittest robot is then awarded the 
task. The version of the system used in our experiments 
allows three tasks to be carried out, annotated with their 
service type: 

- object-tracking (data service) - where a robot tracks 
an object with a coloured marker on it and report its 
position,  

- random-walk (data service) - where a robot 
randomly moves around the environment and 
reports its position, and 

- goto_xy (command service) -  where the robot 
navigates to the location provided. 

Each task is designated as a data or command service as 
mentioned previously to allow for linking options. Data 
services can be considered as providing outputs while 
command services require inputs. A system client 
interface is added to each instance of Murdoch. The 
client has the function of handling server requests, 
requesting a service from the system once a user has 
made a selection, and providing the user client with the 
service-specific user interface.  

In the following experiments, a system consists of one 
robot that can provide the three services. The choice of 
a single shared environment and multiple instantiations 
of the same system provide a focus for analysing the 
issues of scalability and service linking. Once this is 
established, the next development phase of the system 
will be to test it with multiple different systems. 

Exper iment 1 - Service L inking 

The first experiment demonstrates the service linking 
ability of the infrastructure by simulating a user-
tracking and package-delivery task. This is synonymous 
with recruiting a robot to deliver a package to a non-
stationary person. The location of the person can be 
                                                           
2 Player/Stage was developed jointly at the USC Robotics Research 
Labs and HRL Labs and is freely available under the GNU General 
Public License from  http://playerstage.sourceforge.net 

found by employing a user-tracking service that a sensor 
network can provide. In this experiment, the person-
tracker is an object-tracking robot. The user gives the 
delivery robot the package, then selects and links the 
object-tracking and package delivery (goto_xy) services 
from the two independent systems. Once the target 
person has been located, position information is sent 
from the tracking robot to the delivery robot so it can 
navigate to the person and deliver the package.  

Setup 

In this experiment, a randomly wandering robot is used 
to represent the target person in the environment. The 
robot has a coloured marker for identification. The 
object-tracking robot searches for the marker and 
provides position coordinates of the tracked object. The 
goto_xy robot is considered to have a package given to 
it by the user requesting the service. Since both of these 
robots are operating in the same environment and with 
the same type of system, the semantics of the data sent 
between them are preserved.  

Operation 

The Service List Server and the two systems are 
initiated. Since each has three services, the Service List 
Server receives descriptions for six services. There is 
only a single user for this experiment so a User Client is 
started and displays the six choices along with the 
service linking option. The descriptions identify to the 
user that there are two independent systems in the same 
local environment with three services each. The user 
selects the service linking option, along with the object-
tracking service from one system and goto_xy service 
from the other. The server sends messages to the two 
system clients to contact the user client and then 
removes itself from their communication path. 

The user client waits to be contacted by the system 
clients. The user is then presented with the service-
specific interface options and initiates the services. This 
sends 'start' signals to the system clients. The object-
tracking robot starts searching for the person in the 
environment while the goto_xy robot waits for locations 
to be sent to it. Once the person is found, their location 
information is sent to the user client which forwards it 
to the goto_xy service. The robot providing the goto_xy 
service navigates towards the provided location. Once it 
has intercepted the person, the simulation ends as the 
package has been delivered. 

Exper iment 2 - Scalability Testing 

The purpose of this experiment is to provide an 
indication of the scalability of the infrastructure. It is a 
partial test in the sense that it does not test the 
infrastructure to its performance limits. Instead, a 



theoretical analysis of these limits is presented followed 
by an experiment with ten users and systems.  

To theoretically determine the scalability limits of the 
infrastructure, its phases of operation can be analysed. 
The two phases are 1) compiling and supplying the 
global service list, and 2) providing the connection 
between the user and the selected services. The second 
phase is simple. Once the user is connected to the 
service, there is no overhead to the infrastructure since 
the user and system clients are operating remotely to it. 

The first phase consists of many users, a single server, 
and many systems. Analytically, the scalable limit can 
be determined by the amount of information stored by 
the server and the communication bandwidth. Each 
service consists of a single-line description (256 bytes) 
which is stored on the server. Also stored is a list of all 
known system client addresses (4 bytes each) and ports 
(2 bytes each) so they can be sent requests for updates. 
The total overhead for system information storage on 
the server is less than 260 bytes for each service since a 
system client with multiple services will only have one 
instance of its address and port number stored. This 
allows for a large number of services to be stored. 

The infrastructure communication is handled by UDP 
sockets, which have more of an impact on scalability. 
Each system and user adds a communication path to the 
server. These paths are only active upon a user's menu 
selection, or a new service or user addition. The 
maximum throughput of activity occurs when the 
service list is requested. Service list requests occur 
when a new user connects to the system or a service list 
refresh signal is received from a user client.  

The size of each communication packet (one service 
description plus UDP header information) is 
approximately 270 bytes. There is a linear relationship 
between the number of users and the number of services 
for the maximum throughput calculation. If there are 
100 services and the bandwidth of the network is 
10Mbits/sec, the approximate theoretical user limit of 
the system is 46 users. This will only occur if they have 
all simultaneously logged on or requested a service list 
refresh which is highly unlikely. This feasibly indicates 
the infrastructure is scalable well beyond this theoretical 
limit.  

Setup 

The partial scalability experiment simulates ten users 
and ten systems with each system providing three 
services for one robot. Therefore, there are ten robots in 
the environment. Each user selects a service and the 
infrastructure is observed to determine if there are any 
shortcomings with connecting multiple users to multiple 
systems' services. 

Operation 

As the systems come online, their services' descriptions 
are sent to the Service List Server. As the users come 
online, they are presented with this list of services and 
can select whichever they require. Systems and users 
can connect in any order and at any time. Each user 
selects a data service for this initial phase of the 
experiment.  

There were no observed problems with connecting this 
many users to services, so to further test the versatility 
of the infrastructure, a user requested a linked service3. 
In the presence of the other services and robots in 
operation, the user selected a random-walk service for 
the data service and linked the information to a goto_xy 
service on another system. The position of the randomly 
walking robot was forwarded to the goto_xy robot 
which made it follow the other robot around. This was 
carried out without any problems. The other users 
stopped and started services dynamically throughout the 
simulation and the system was robust to these requests. 

5. Discussion 

Throughout this paper, it is stated that the infrastructure 
needs to be general and simple with little 
implementation overhead if it is to be scalable. This 
section describes how three primary components of our 
infrastructure achieve these goals. 

Scalability: The Service L ist Server  

The main reason for using a centralised server to gather 
the service list is its simplicity and to reduce the 
communication flow between the m possible users and 
the n possible systems. This reduces the communication 
problem from magnitude (m x n) if they were fully 
interconnected, to (m + n). The risk with this approach 
is that a loss of the server affects service selection. 
There are many possible mechanisms to overcome this 
limitation that have not been explored yet, such as 
distributing and linking servers with partial service lists. 

Failure of the server does not affect already connected 
interactions which also benefits scalability. 

Low Overhead: The System Clients  

The purpose of system clients is to provide an interface 
to a system's services with as little implementation 
overhead as possible. The overhead in this case is the 
modification required for each system to allow it to 
interface with the infrastructure. This mainly consists of 
the UDP client message-handling software with service-
specific input and output data managers. For the 

                                                           
3 Two users had stopped using a system allowing two robots to be 
waiting for service requests. 



systems used in our experiments, this proved to be 
trivial to implement. 

Generality: The User  Clients 

The user clients present the global service list to their 
user initially and then the service-specific interface. 
Since the type of information they are required to 
manage is unknown, a general solution is required. This 
is established by allowing the user interface to be 
determined by the system client. For the research 
presented in this paper, the user interface is simple and 
does not provide a great deal of functionality.  

The user client also has the ability to combine services. 
This requires a semantic understanding of the data 
between the system and user clients since combining 
services redirects the information supplied by one 
service to the input of another. For the current 
implementation, this is the user's responsibility. 
Incompatible data may result in the command system 
client not responding to the data input. While this may 
not be a problem for discrete signals (such as could be 
used for sequential control), it can be a problem for 
more context-rich data such as location information. To 
overcome this possible limitation, a protocol can be 
used to identify semantically similar command and data 
services. This allows systems with the same type of data 
to have their services linked as demonstrated in the 
experiments.  

6. Conclusions 

The primary goal of the infrastructure presented in this 
paper is to demonstrate a scalable solution for 
interfacing multiple users with multiple systems. The 
infrastructure is simple, provides a loose initial coupling 
between users and systems, and requires minimal 
modification to existing systems desiring to add their 
services. In addition, it allows services to be combined 
by the user to develop higher level abstractions.  

Due to the simple architecture of the infrastructure, 
various existing and proven technologies can be applied 
to enhance its operational effectiveness. For example, a 
scheduling component can be added to manage multiple 
requests for the same service, and web browsers can be 
used for the user interface.  

The results demonstrated by the initial experiments 
indicate that the infrastructure promises high scalability. 
There are many enhancements for the next iteration of 
development which are described in the next section.  

7. Future Work 

The main enhancements left for the next version of the 
infrastructure are: 

- allow the system and user clients to handle more 
diverse services, 

- allow the service linking option to link many 
services such as providing multiple goto_xy robots 
with the same location information from another 
service, 

- add the mechanism to generate higher functionality 
service-specific user interfaces [15] once the user 
has selected the service, or allow the users to 
compile their own interface depending on the 
available modalities [4], 

- decentralise the server so it has redundancy with 
minimal impact on performance, and 

- allow parameters to the services such as time for 
completion. 

The long-term goal for the infrastructure's development 
is to remove the concept of a user and system by 
making them all peer entities. This will allow users to 
request and provide services in the same way as a 
system does. Any service request can then be provided 
by an anonymous entity.  
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