
CRES Technical Report #004. August 2002.

G'day Mate. Let me Introduce you to Everyone: An Infrastructure for
Scalable Human-System Interaction

Ashley D. Tews, Maja J. Matari�, Gaurav S. Sukhatme, Brian P. Gerkey

Robotics Laboratory,
University of Southern California,

Los Angeles, USA,
{atews| mataric|gaurav|gerkey}@robotics.usc.edu

Abstract

We are exposed to physical and virtual systems every
day. They consist of computers, PDAs, wireless devices
and increasingly, robots. Each provides services to
individual or groups of users whether they are local or
remote to the system. Services offered by these systems
may be useful beyond these users to others, however
connecting many of these systems to more users
presents a challenging problem. The primary goal of the
research presented in this paper is to demonstrate a
scalable approach for connecting multiple users to the
services provided by multiple systems. Such an
approach must be simple, robust and general to contend
with the heterogeneous capabilities of the services. An
infrastructure is presented that addresses these
scalability requirements and establishes the foundation
for contending with heterogeneous services.
Additionally, it allows services to be linked to form
higher-level abstractions. The infrastructure is
demonstrated in simulation on several similar multi-
robot systems with multiple users. The results propose it
as a solution for large-scale human-system interaction.

1. Introduction

The issue of scalability in human-system interaction
applies to both the human and the system ends. How do
many people interact with many systems? A general
solution for interacting with a small number or single
systems is to maintain interaction infrastructures
dedicated to a specific set of users. Such approaches
tend to be application-specific and are scalable only in
their local operating environment. There are many
issues to address if the infrastructure is to allow users
outside of these bounds, as well as extending the
number of managed systems. The main issues concern
the scalability of the infrastructure, the heterogeneity of
the information provided by other systems, and the user
interfaces required for meaningful interaction with these
systems. There is a large amount of diversity in each of
these issues considering the user can have varying levels
of interaction with a system. For example, a user tele-
operating a robot requires a more specific user interface
and higher communication bandwidth than a
supervisory user of a multi-robot system. Developing an

infrastructure that can address these issues and their
diversities is the focus of this paper.

A system is an entity that provides services
(assistance/information) to a user. A service is thus a
system resource. A user is defined as a human or system
requiring the service. The requirement of connecting
large numbers of systems to large numbers of users
demands a scalable and simple solution. It is also
beneficial for existing systems to undergo minimal
modification to allow them to interface with such a
solution. The approach must therefore be able to:

- scale to large numbers of users,

- scale to large numbers of systems and their
services,

- manage the diversity of the information provided
by the services, and

- allow for the variety of user interfaces required for
the services.

The infrastructure presented in this paper has been
developed under consideration of all issues but so far
primarily addresses the first two. Additionally, it
extends the usability of the infrastructure allowing
services to be linked to form higher-level abstractions.
This is beneficial for sequential and concurrent control
of multiple services and adds more flexibility to the
infrastructure. Sequential control allows one service to
provide an event-based trigger to initiate another.
Concurrent control can be provided in some instances
when the services have semantically similar
information: one service provides the input to another
for their concurrent operation. An example is
demonstrated in this paper where an object-tracking
service provides the dynamic location of a robot to a
package delivery robot that uses it as a navigation goal.

The following section provides a review of the research
in related areas of human-system interaction. Section 3
presents the infrastructure. Section 4 presents
experimental results that demonstrate some of the
capabilities of the infrastructure. Section 5 provides a
discussion of the infrastructure components. Section 6
provides conclusions based on the experimental results
in terms of the requirements of the infrastructure

described above. Section 7 identifies the goals of the
next development stage of the infrastructure.

2. Related Work

Considering a system can consist of physical entities
(such as robots or embedded devices) and virtual
entities (such as the services provided by computer
programs), human-system interaction covers large areas
of research. In [1], a taxonomy is presented categorising
human and intelligent system research. The concept of
an intelligent system is a system that allows for user
interaction (e.g. tele-robotics). The categories include
the application of the research, the research approach,
system autonomy, interaction distance and interaction
media with each category divided into subcategories.
Many references are grouped under these categories,
which illustrates the vastness of the field. Another axis
that can be added to the classifications is the scalability
of the approaches in terms of users and systems.

This section classifies human-system architectures in
terms of their scalability assuming a system consists of
a set of nodes that provide a set of services to users.
These classifications are shown in Table 1 and are
discussed in the following sections that separate them
into single (non-shaded table entries) and multi-user
architectures (shaded table entries).

Table 1: User/system scalability classification

 Users Systems
1 one one
2 one multiple
3 multiple one
4 multiple multiple

Single-user System Architectures

There are many examples relating to the entries in the
table above. The issues concerning scalability are
highlighted when examining these examples. An
important issue that affects the scalability of an
approach is how tightly coupled the users are with the
system. This concerns access to system resources and
levels of control over system services. Single-user
systems allow the user full access to the system services
and control. Scaling these to more users can be difficult
due to these aspects (such as communication
bandwidth) having to be shared. Tele-operation of a
single system node is an example where this is
highlighted [12]. Multi-robot research also provides
examples where multiple robots can be controlled
individually or as a group by a single user
[2][3][11][16]. In each of these systems, the nodes have
a certain degree of autonomy and the user has either
high level group control, or low level individual control.

This indicates that the higher the number of users an
interaction architecture has to deal with, the looser the
coupling between users and systems.

The concept of a single user for multiple systems
indicates a hierarchical command structure where there
is a top-level entity that controls the systems below their
level.

Multi-user System Architectures

Multi-user and multi-service systems are forced to
address scalability, system resource allocation and
control. A key concern is how to control the information
and communication pathways for multiple users.
Common approaches involve using multi-agent
architectures [6][10][14][15] and the Internet.

Multi-agent architectures offer services to users with
suitable access to the systems they serve. Examples
include interactive workspaces [7][13] which consist of
dedicated environments with embedded devices
providing services for users. The users generally must
be in the environment to access the services.

Multi-user/multi-robot architectures are demonstrated
by [5][17]. These systems use the Internet as a
communication medium for commanding robots from
remote locations.

Many of the examples presented in this section are
scalable only in their local operating environment or
application domain. The infrastructure presented in the
next section is intended to operate beyond these limits,
as well as contending with the diversity of coupling and
resource sharing required by individual systems.

3. Infrastructure

The infrastructure we have developed is shown in
Figure 1 as the shaded boxes. It is a client/server
method using UDP as the communication protocol.
Each user has a client that provides an interface with the
infrastructure. Similarly, the system client acts as the
system interface to the infrastructure. The Service List
Server manages the initial contact between users and
systems. Once a user has selected their desired services,
the server connects the associated user's and system's
clients, then removes itself from their communication
loop.

To be scalable, the infrastructure must be general,
simple and initially provide a loose coupling between
users and systems. It has to be general to manage the
heterogeneous services provided by unknown systems.
It has to be simple to reduce any bottlenecks that can
occur, particularly by the communication paths. It also
must require as little non-invasive addition as possible
to existing systems for it to be accepted. These goals
constitute the philosophy for infrastructure design. For

the implementation described in this paper, the
following assumptions are made with the presumption
that those that present limitations will be addressed in
subsequent development phases:

1. The systems already exist.

2. The contact details (i.e. host and port number) of
the server are known by system clients.

3. The user interfaces for each system are simple and
have low functionality.

4. Each system can provide multiple services, but only
one can be linked to a user for a session.

5. The semantics of the interaction are understood by
the user and the system so that system responses to
user requests are what the user expects.

6. System managers are motivated to have their
system's services available to users.

The Infrastructure's Sequence of Operation

This section details the steps for using the infrastructure.

Step 1. Generating the global service list

The first step for using the infrastructure is to compile
the complete list of services offered by the systems. Any
time a system connects to the server, its client sends its
list of services. The Service List Server stores these
descriptions along with the system clients' contact
details.

Step 2. Presenting the list to the user client

Whenever a user client connects to the server, the server
requests the service lists from all known system clients.
This ensures all l isted services are current and valid.
The global list is then sent to the requesting user client1.
The list is presented to the user as a menu along with an

1 In future infrastructure development, this will refresh all user clients'
lists.

additional option of combining compatible services.
Service compatibility must fulfil two criteria. First, the
services must be semantically compatible so the shared
information has a uniform meaning. Second, one service
must be a data provider for the other. This is established
by labeling each service as a data provider or a
command service as part of the service descriptions.

Step 3. Selecting services

When a user selects a service, the user client sends the
request to the server which forwards it to the relevant
system along with contact details for the user client. The
server then disconnects from both the user's and
system's clients allowing direct and higher bandwidth
between them.

Step 4. Using the service

The user is presented with a new menu of actions for the
requested service. These include terminating the service
and establishing a new connection to the server
(transparent to the user), exiting from the infrastructure,
or starting the service. Once the user selects the option
for starting the service, a signal is sent to the system
client to start executing the service. In future
infrastructure development, this will also establish a
service-specific user interface. The user interacts with
the selected system until the service completes.

4. Validating the Operation of the
Infrastructure

The main goals of the infrastructure are to allow
heterogeneous services, large numbers of users and
systems, and to provide a mechanism for linking
services, if appropriate, with little overhead to existing
systems. To illustrate how the infrastructure achieves
many of these goals, two simulation experiments are

 R R R R

User Level

Server Level

System Level

Figure 1: The infrastructure for connecting multiple users to multiple system services

Service List Server

System_1 Client

 service 1 service 2

System_n Client

 service 1 service 2

User Interface

User_a Client

User Interface

User_n Client

carried out using the Player/Stage2 platform [9]. The
Player platform provides a library of device software for
developing Pioneer 2 mobile robot applications. The
Stage simulator interfaces with the Player software to
provide valid real system operation of Player devices. It
also allows multiple robots to be simulated in user-
designed environments in real or accelerated time. In
our experiments, the environment is a simulated large
room.

The systems used in the experiments are based on the
Murdoch [8] task allocation system. Murdoch uses an
auction-based approach to task allocation. When a task
is to be assigned, Murdoch holds a first-price auction
and each available robot submits a bid that represents its
fitness for the task; the fittest robot is then awarded the
task. The version of the system used in our experiments
allows three tasks to be carried out, annotated with their
service type:

- object-tracking (data service) - where a robot tracks
an object with a coloured marker on it and report its
position,

- random-walk (data service) - where a robot
randomly moves around the environment and
reports its position, and

- goto_xy (command service) - where the robot
navigates to the location provided.

Each task is designated as a data or command service as
mentioned previously to allow for linking options. Data
services can be considered as providing outputs while
command services require inputs. A system client
interface is added to each instance of Murdoch. The
client has the function of handling server requests,
requesting a service from the system once a user has
made a selection, and providing the user client with the
service-specific user interface.

In the following experiments, a system consists of one
robot that can provide the three services. The choice of
a single shared environment and multiple instantiations
of the same system provide a focus for analysing the
issues of scalability and service linking. Once this is
established, the next development phase of the system
will be to test it with multiple different systems.

Exper iment 1 - Service L inking

The first experiment demonstrates the service linking
ability of the infrastructure by simulating a user-
tracking and package-delivery task. This is synonymous
with recruiting a robot to deliver a package to a non-
stationary person. The location of the person can be

2 Player/Stage was developed jointly at the USC Robotics Research
Labs and HRL Labs and is freely available under the GNU General
Public License from http://playerstage.sourceforge.net

found by employing a user-tracking service that a sensor
network can provide. In this experiment, the person-
tracker is an object-tracking robot. The user gives the
delivery robot the package, then selects and links the
object-tracking and package delivery (goto_xy) services
from the two independent systems. Once the target
person has been located, position information is sent
from the tracking robot to the delivery robot so it can
navigate to the person and deliver the package.

Setup

In this experiment, a randomly wandering robot is used
to represent the target person in the environment. The
robot has a coloured marker for identification. The
object-tracking robot searches for the marker and
provides position coordinates of the tracked object. The
goto_xy robot is considered to have a package given to
it by the user requesting the service. Since both of these
robots are operating in the same environment and with
the same type of system, the semantics of the data sent
between them are preserved.

Operation

The Service List Server and the two systems are
initiated. Since each has three services, the Service List
Server receives descriptions for six services. There is
only a single user for this experiment so a User Client is
started and displays the six choices along with the
service linking option. The descriptions identify to the
user that there are two independent systems in the same
local environment with three services each. The user
selects the service linking option, along with the object-
tracking service from one system and goto_xy service
from the other. The server sends messages to the two
system clients to contact the user client and then
removes itself from their communication path.

The user client waits to be contacted by the system
clients. The user is then presented with the service-
specific interface options and initiates the services. This
sends 'start' signals to the system clients. The object-
tracking robot starts searching for the person in the
environment while the goto_xy robot waits for locations
to be sent to it. Once the person is found, their location
information is sent to the user client which forwards it
to the goto_xy service. The robot providing the goto_xy
service navigates towards the provided location. Once it
has intercepted the person, the simulation ends as the
package has been delivered.

Exper iment 2 - Scalability Testing

The purpose of this experiment is to provide an
indication of the scalability of the infrastructure. It is a
partial test in the sense that it does not test the
infrastructure to its performance limits. Instead, a

theoretical analysis of these limits is presented followed
by an experiment with ten users and systems.

To theoretically determine the scalability limits of the
infrastructure, its phases of operation can be analysed.
The two phases are 1) compiling and supplying the
global service list, and 2) providing the connection
between the user and the selected services. The second
phase is simple. Once the user is connected to the
service, there is no overhead to the infrastructure since
the user and system clients are operating remotely to it.

The first phase consists of many users, a single server,
and many systems. Analytically, the scalable limit can
be determined by the amount of information stored by
the server and the communication bandwidth. Each
service consists of a single-line description (256 bytes)
which is stored on the server. Also stored is a list of all
known system client addresses (4 bytes each) and ports
(2 bytes each) so they can be sent requests for updates.
The total overhead for system information storage on
the server is less than 260 bytes for each service since a
system client with multiple services will only have one
instance of its address and port number stored. This
allows for a large number of services to be stored.

The infrastructure communication is handled by UDP
sockets, which have more of an impact on scalability.
Each system and user adds a communication path to the
server. These paths are only active upon a user's menu
selection, or a new service or user addition. The
maximum throughput of activity occurs when the
service list is requested. Service list requests occur
when a new user connects to the system or a service list
refresh signal is received from a user client.

The size of each communication packet (one service
description plus UDP header information) is
approximately 270 bytes. There is a linear relationship
between the number of users and the number of services
for the maximum throughput calculation. If there are
100 services and the bandwidth of the network is
10Mbits/sec, the approximate theoretical user limit of
the system is 46 users. This will only occur if they have
all simultaneously logged on or requested a service list
refresh which is highly unlikely. This feasibly indicates
the infrastructure is scalable well beyond this theoretical
limit.

Setup

The partial scalability experiment simulates ten users
and ten systems with each system providing three
services for one robot. Therefore, there are ten robots in
the environment. Each user selects a service and the
infrastructure is observed to determine if there are any
shortcomings with connecting multiple users to multiple
systems' services.

Operation

As the systems come online, their services' descriptions
are sent to the Service List Server. As the users come
online, they are presented with this list of services and
can select whichever they require. Systems and users
can connect in any order and at any time. Each user
selects a data service for this initial phase of the
experiment.

There were no observed problems with connecting this
many users to services, so to further test the versatility
of the infrastructure, a user requested a linked service3.
In the presence of the other services and robots in
operation, the user selected a random-walk service for
the data service and linked the information to a goto_xy
service on another system. The position of the randomly
walking robot was forwarded to the goto_xy robot
which made it follow the other robot around. This was
carried out without any problems. The other users
stopped and started services dynamically throughout the
simulation and the system was robust to these requests.

5. Discussion

Throughout this paper, it is stated that the infrastructure
needs to be general and simple with little
implementation overhead if it is to be scalable. This
section describes how three primary components of our
infrastructure achieve these goals.

Scalability: The Service L ist Server

The main reason for using a centralised server to gather
the service list is its simplicity and to reduce the
communication flow between the m possible users and
the n possible systems. This reduces the communication
problem from magnitude (m x n) if they were fully
interconnected, to (m + n). The risk with this approach
is that a loss of the server affects service selection.
There are many possible mechanisms to overcome this
limitation that have not been explored yet, such as
distributing and linking servers with partial service lists.

Failure of the server does not affect already connected
interactions which also benefits scalability.

Low Overhead: The System Clients

The purpose of system clients is to provide an interface
to a system's services with as little implementation
overhead as possible. The overhead in this case is the
modification required for each system to allow it to
interface with the infrastructure. This mainly consists of
the UDP client message-handling software with service-
specific input and output data managers. For the

3 Two users had stopped using a system allowing two robots to be
waiting for service requests.

systems used in our experiments, this proved to be
trivial to implement.

Generality: The User Clients

The user clients present the global service list to their
user initially and then the service-specific interface.
Since the type of information they are required to
manage is unknown, a general solution is required. This
is established by allowing the user interface to be
determined by the system client. For the research
presented in this paper, the user interface is simple and
does not provide a great deal of functionality.

The user client also has the ability to combine services.
This requires a semantic understanding of the data
between the system and user clients since combining
services redirects the information supplied by one
service to the input of another. For the current
implementation, this is the user's responsibility.
Incompatible data may result in the command system
client not responding to the data input. While this may
not be a problem for discrete signals (such as could be
used for sequential control), it can be a problem for
more context-rich data such as location information. To
overcome this possible limitation, a protocol can be
used to identify semantically similar command and data
services. This allows systems with the same type of data
to have their services linked as demonstrated in the
experiments.

6. Conclusions

The primary goal of the infrastructure presented in this
paper is to demonstrate a scalable solution for
interfacing multiple users with multiple systems. The
infrastructure is simple, provides a loose initial coupling
between users and systems, and requires minimal
modification to existing systems desiring to add their
services. In addition, it allows services to be combined
by the user to develop higher level abstractions.

Due to the simple architecture of the infrastructure,
various existing and proven technologies can be applied
to enhance its operational effectiveness. For example, a
scheduling component can be added to manage multiple
requests for the same service, and web browsers can be
used for the user interface.

The results demonstrated by the initial experiments
indicate that the infrastructure promises high scalability.
There are many enhancements for the next iteration of
development which are described in the next section.

7. Future Work

The main enhancements left for the next version of the
infrastructure are:

- allow the system and user clients to handle more
diverse services,

- allow the service linking option to link many
services such as providing multiple goto_xy robots
with the same location information from another
service,

- add the mechanism to generate higher functionality
service-specific user interfaces [15] once the user
has selected the service, or allow the users to
compile their own interface depending on the
available modalities [4],

- decentralise the server so it has redundancy with
minimal impact on performance, and

- allow parameters to the services such as time for
completion.

The long-term goal for the infrastructure's development
is to remove the concept of a user and system by
making them all peer entities. This will allow users to
request and provide services in the same way as a
system does. Any service request can then be provided
by an anonymous entity.

8. References

[1] A. Agah, "Human Interactions with Intelligent Systems:
Research Taxonomy", Computers and Electrical
Engineering, 2001, no. 27, pp. 71-107.

[2] K. Ali, and R. Arkin, "Integration of Reactive and
Telerobotic Control in Multi-agent Robotics Systems",
From Animals to Animats 3: SAB 1994, pp. 473-478.

[3] R. Arkin, T. Collins, and Y. Endo, "Tactical Mobile
Robot Mission Specification and Execution", Mobile
Robots XIV, Boston, MA, September, 1999, pp. 150-163.

[4] B. Dorohonceanu, B. Sletterink, and I. Marsic, "A Novel
User Interface for Group Collaboration", Proceedings of
the 33rd Hawaii International Conference on System
Sciences, Maui, Jan. 4-7, 2000.

[5] I. Elhajj, J. Tan, N. Xi, W. Fung, Y. Liu, T. Kaga, Y.
Hasegawa, and T. Fukuda, "Multi-site Internet-based
Cooperative Control of Robotic Operations", Proceedings
of the 2000 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Takamatsu, Japan, 2000,
pp.826-831.

[6] T. Finin, R. Fritzson, D. McKay, and R. McEntire,
"KQML as an Agent Communication Language",
Proceedings of the Third International Conference on
Information and Knowledge Management, ACM Press,
1994, pp. 456-463.

[7] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd,
"Integrating Information Appliances into an Interactive
Workspace", IEEE Computer Graphics and Applications,
May/June, 2000, pp. 54-65.

[8] B. Gerkey, and M. Matari�, "Principled Communication
for Dynamic Multi-Robot Task Allocation", Experimental
Robotics VII, LCNIS 271, Springer-Verlag, 2001, pp.
353-362.

[9] B. Gerkey, R. Vaughan, K. Støy, A. Howard, G.
Sukhatme, and M. Matari�, "Most Valuable Player: A
Robot Device Server for Distributed Control",
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2001), Wailea,
Hawaii, Oct. 29-Nov. 3, 2001, pp. 1226-1231.

[10] S. Goldsmith, S. Spires, and L. Phillips, "Object
Frameworks for Agent System Development", technical
report no. SAND98-0742A, Sandia National
Laboratories, 1998.

[11] H. Jones, and M. Snyder, M. "Supervisory Control of
Multiple Robots Based on a Real-time Strategy Game
Interaction Paradigm", Proceedings of the 2001 IEEE
International Conference on Systems, Man, and
Cybernetics, Tucson, AZ, October 2001, pp. 383-388.

[12] K. Kawamura, R. Peters, C. Johnson, P. Nilas, P. and S.
Thongchai, "Supervisory Control of Mobile Robots Using
Sensory Egosphere", IEEE Symposium on Computational
Intelligence in Robotics and Automation, Jul. 29-Aug. 01,
Banff, Canada, 2001.

[13] J. Lee, and H. Hashimoto, "Intelligent Space - Its concept
and contents", Proceedings of the 2000 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Takamatsu, Japan, 2000, vol. 2. pp.
1358-1363.

[14] L. Phillips, S. Goldsmith, and S. Spires, "CHI: A General
Agent Communication Framework", technical report no.
SAND98-2825C, Sandia National Laboratories, 1998.

[15] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and T.
Winograd, "ICrafter: A Service Framework for
Ubiquitous Computing Environments", Proceedings of
the Ubiquitous Computing Conference. Lecture Notes in
Computer Science", vol. 2201, 2001, pp. 56-75.

[16] P. Rybski, I. Burt, T. Dahlin, M. Gini, D. Hougen, D.
Krantz, F. Nageotte, N. Papanikolopoulos, and S. Stoeter,
"System Architecture for Versatile Autonomous and
Teleoperated Control of Multiple Miniature Robots",
Proceedings of the 2001 IEEE International Conference
on Robotics and Automation, Seoul, Korea, 2001.

[17] H. Surmann, and M. Theißinger, "ROBODIS: A
Dispatching Sysetm for Multiple Autonomous Service
Robots", Proceedings of the FSR'99 Robotics
Applications for the Next Millenium, Pittsburgh, PA, pp.
168-173.

