In Intl. J. of Robotics Research 25(4):299-316, April 2006

Visibility-based pursuit-evasion with limited field of viéw

Brian P. Gerkey Sebastian Thrun Geoff Gordon
gerkey@ai.sri.com thrun@stanford.edu ggordon+@cs.cmude!

1 Artificial Intelligence Center, SRI International
1 Artificial Intelligence Lab, Stanford University
o Center for Automated Learning and Discovery, Carnegie Mdllaiversity

Abstract

We study the visibility-basegursuit-evasiorproblem, in which one or more searchers must move
through a given environment so as to guarantee detectionyoéiad all evaders, which can move ar-
bitrarily fast. Our goal is to develop techniques for coneding teams of robots to execute this task
in application domains such as clearing a building, for oeasof security or safety. To this end, we
introduce a new class of searcher, thgearcher, which can be readily instantiated as a physioal m
bile robot. We present a detailed analysis of the pursudsien problem using-searchers. We present
the first complete search algorithm for a singlsearcher, show how this algorithm can be extended to
handle multiple searchers, and give examples of compuagettories.

1 Introduction

We address the problem known@sgsuit-evasionThe goal is to direct the actions of one or meearchers
through a given environment in such a way as to guarantee thavaergresent in the environment will
be found. As an example, consider the problem of closing a museum foigthte In order to be sure that no
thieves or other malcontents remain inside after closing, the guards mustnperthorough search of the
building. They must keep in mind that intruders are mobile and may try to avoididrelg. For example, if
a guard is checking each room along a hall, an intruder might sneak bibleigiard while he is checking
one room and hide in a room that was already checked. In this cassoloien might be to use two guards,
with one always keeping watch on the hall.

Our goal is to derive strategies for robots that allow them to play the rolaaidy In particular, we are
interested in techniques for coordinating the actions of teams of robots t@oki@ buildings. In this paper,
we establish an analytical foundation for studying this problem by introdubimgoncept of @-searcher,
which is a robot equipped with & radian field of view (FOV) sensor for detecting evaders. Our motivation
for focusing on sensors with limited FOV is that we wish to derive strategra®bmts, and most robots are
equipped with such sensors. For example, the popular Pioneer mobildsaften equipped with a80°
array of sonars (Figure 1(a)). Many robots carry more sophisticsgadors, such as laser range-finders
(Figure 1(b)) or cameras (Figure 1(c)), but these too tend to have lim@&d F

*This paper is an extension of work originally reported in: Gerkey, BTRrun, S. & Gordon, G. (2004), Visibility-based
pursuit-evasion with limited field of viewn ‘Proc. of the Natl. Conf. on Artificial Intelligence (AAAI)’, San Joseal@ornia,
pp. 20-27.
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Figure 1: Some robots equipped with common sensors with limited ffelibw: (a) sonar array, (b) laser range-
finder, and (c) camera.

So theg-searcher reflects the realities of physical robots and thus the techniguédevelop can be
applied to robots. Furthermore, the visibility characteristics ofisearcher are sufficiently different from
those of previously studied searchers to warrant the analysis thaesenthere.

After formally describing the pursuit-evasion problem, we analyze thebilitpes of the¢-searcher and
show that computing the minimum number @®fearchers required to search an environment is NP-hard.
We then present the first complete search algorithm for the case af-eearcher in a known polygonal
environment. The key to this algorithm, and the primary contribution of this pagpdhne identification
of an exact cell decomposition of the searcher’s configuration spatedatiuces the original continuous
problem to an equivalent discrete problem. We show how the algorithmecartbnded to handle multiple
robots (albeit at a loss of completeness). We have implemented and testelgahitha in a variety of
environments and present example solution trajectories.

2 Background and related work

Pursuit-evasion problems have long been studied from the perspettiffecential game theory (Isaacs
1965, Hajek 1975). Given motion models for a pursuer and an evader that move apém plane, the goal
is to determine the conditions necessary for them to collide. Parsons (it@&@)uced a rather different
formulation (referred to hereafter Rarsons’s problemin which the domain is restricted to a discrete graph.
Nothing is known about the location or motion of the evader, who is assumezablé to move arbitrarily
fast through the graph. His motivation was the problem of coordinating@lséeam to locate a spelunker
who has become lost in a network of caves (which can be representedjtaph), but these worst-case
assumptions about the evader could equally well describe a more atiesgaation. The spelunker, or
evader, can occupy any edge in the graph; to find the evader, &eearast walk along the edge occupied
by the evader and “touch” the evader. The entire graph is init@digtaminatedwhich means that the
evader could be anywhere. As the search progresses, an atdiggrésiwhen it is no longer possible for the
evader to occupy that edge. Should it later happen that the evadertagdnoved back to a previously
clear edge, that edge is said toeeontaminated Using this terminology, the goal of the problem can be
restated as follows: find a trajectory for each searcher such thattine graph is cleared.

A visibility-based version of Parsons’s problem was introduced by u&Wwamashita (1992), who
changed the domain from discrete graphs to continuous polygonal peeses and coined the terin
searcher In this formulation, in order to find an evaderkesearcher need not touch the evader, but can
instead “see” the evader from a distance. kksearcher is equipped withinfinitely thin “flashlights” with
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Figure 2:Introduction to thep-searcher. Shown in (a) is an example of @earcher positioned at a poiptwith an

orientationd in a polygonal free spac€’. The shaded region is the searcher’s visibility polyg@p(p, #). Shown as
dashed lines in (b) are the induced gap edges forthégarcher, which partition the free space into 5 regionsélad

A-E).

which it can search the environment. These flashlights have unlimited rangeahnot see through walls)
and can be freely rotated about the searcher at bounded speedlapdridently of the searcher’s motion.
Commonly studied are the cases whiega- 1, k = 2, andk = oo (LaValle et al. 1997, Guibas et al. 1999,
Lee et al. 2002). Theo-searcher can see in all directions at once. A recent interesting reshit any
polygonal free space that is searchable by a sitgigearcher is also searchable by a single 2-searcher (Park
et al. 2001), implying some parity of capabilities between the two. Randomizedipalgorithms have also
been studied, in both discrete graphs (Adler et al. 2003) and polyfreeasdpaces (Isler et al. 2005).

There has also been some work on forms of pursuit-evasion with physisats. Roy & Gordon (2002)
model the single-robot action-selection problem as a POMDP, which is mactalite by compression of
the sparse belief space. A similar probabilistic framework is employed by ¥idal. (2002), who use
heuristic search to find strategies for coordinating teams of air and grahides to search an unknown
outdoor environment. Kalra et al. (2005) use a synthetic market to c@tedime actions of a team of robots
executing a “security sweep” of an indoor environment. More distantlyeels the large body of work
on cooperative tracking of moving targets with fixed sensors and/or maliites (Parker 1999, Werger &
Mataric 2001, Jung & Sukhatme 2002, Stroupe 2003, Spletzer & Taylor 2003).

As the velocity of the evader approaches zero, the pursuit-evasibepracan be seen as a problem
of multi-robot exploration, which has been extensively investigated (l§o&rSimmons 1993, Yamauchi
1998, Burgard et al. 2000). Similarly, as the number of available robotggjiarge with respect to the size
and complexity of the environment, pursuit-evasion can be solved by fimtiitig sensor placements that
cover the entire environment. This is known as the Art Gallery problem, astiéen studied in great depth
(O’'Rourke 1987, Shermer 1992).

To our knowledge, limited-FOV pursuit-evasion represents an opergonothat has not been previ-
ously addressed. Existing analytical work is concerned with some fortimedf-searcher, while existing
experimental work with robots lacks the rigorous analysis and formaltsethat we present here. The
pursuit-evasion algorithms developed to date are not applicable to themprtitdeis the topic of this paper.



3 The ¢-searcher

We introduce a new class of searcher, fhgearcher The ¢-searcheris a holonomic (i.e., omnidirectional
drive) mobile robot that moves in the plane and is equipped with a limited FO\Wsé@asing angular
aperturep € (0,27). The sensor has unlimited range, but cannot penetrate obstaclesofidti€an move
(i.e., rotate and/or translate) at bounded speedy As 27, we have amc-searcher; a® — 0, we have a
1-searcher. FOb < ¢ < 27, however, we have a different kind of searcher. Since the sansS@GV can be
freely rotated about the searcher at bounded speed and indefigrdéine searcher’'s motion (this follows
from the holonomic capability of the robot), the capabilities of ¢hgearcher lie somewhere between those
of a 1-searcher and those of a 2-searcher. Shown in Figure 2 issanpéxof ap-searcher, fop = .

Given a connected polygonal free spdtehe pursuit-evasion problem is to find a trajectory throégh
for ¢-searchers that guarantees detection oéaaderwhose trajectory and initial location are unknown.
The evader can be arbitrarily small (even a single point) and can moveaaithifast, but continuously,
throughF'. Analogously to the graph search problem, any paft efhere the evader can be hiding is called
contaminatedand any part o’ where the evader cannot be hiding is calidehr. Whenever there exists a
path between contaminated space and clear space, that clear spacéadeagtontaminatedThe space
Fisinitially contaminated and the goal is to clear it.

3.1 Capabilities of thep-searcher

We can circumscribe the capabilities of a singleearcher with the observation that a polygonal free space
I is searchable by a singlesearcher only iff" is simply-connected. I’ contains at least one hole, then
an evader can elude a single searcher by moving to keep the hole betewsen th

A single ¢-searcher is limited to searching simply-connected environments, but ibtsearch all such
environments. Given two angleg and ¢», with ¢1 > ¢9, it is clear that any environment that can be
searched by &,-searcher can also be searched ly-@&earcher (e.g., the, -searcher can execute the same
trajectory as did thes-searcher). Less obvious is whether there exists an environmenathbecsearched
by ¢1-searcher, but not by &-searcher. That is, does searching capability actually increase witategr
FOV?

We can answer in the affirmative by use of the polygon shown in Figujesléch we call the “jagged
E” (inspired by a similar environment due to Suzuki & Yamashita (1992)nditter the pointsi, B, and
C: any ¢-searcher pose that provides coveragedadr of C' leaves open an uncovered path between the
other two points. This is true, regardless of the valué,afven for¢ = 27. As a result, it is only possible
to search the jagged E in one of two ordefis:~ B — C, orC — B — A. While clearingB, the searcher
must not allow an uncovered path betweémandC'. All other orders (that do not end in one of the given
two sequences) would allow earlier work to be undone. For example, iketrelser were to use the order
B — A — (C, the pointB would necessarily be recontaminated®yvhile the searcher is clearing.

Assume without loss of generality that¢asearcher has clearedl and will now clearB. In order
to avoid recontamination ofi, the searcher must not allow any uncovered path ftérro A. In other
words, the searcher must simultaneously cavemd the vertical corridor on the left of the jagged E. Such
coverage is not possible for all values¢fin fact, the minimum required FOV is equal to the angle labeled

It may be the case with physical robots that the available map, havingawegired from sensor data, is grid-based, rather
than polygonal. If so, then the first step is to generate an approximatggually representation of the grid-based map, either
automatically (e.g., via smoothing and line-fitting) or manually (e.g., withaileof an architectural floorplan).
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Figure 3:Shown in (a) is the “jagged E,” which demonstrates hgwgearcher capability varies continuously with the
searcher’s field of view. To search this environmend-searcher must be able to simultaneously cover the pBint
and prevent an uncovered path betweeand C. The minimum value af required for this coverage is equal to the
angled. By varyingd, we can create environments that requirg ssearcher (b), & -searcher (c), & -searcher (d),

a ?jf-searcher (e), or any othef-searcher, fol0 < ¢ < .

O
O

Figure 4:Mapping a planar graph of nodes and edges onto an equivatdggpnal free space of rooms and hallways.
The visibility properties of the original graph are presedvby introducing an occluding kink in each hallway.

6 in Figure 3(a): a&-searcher positioned @ can simultaneously cove® and the vertical corriddt. For
example, Figure 3(b) shows howjasearcher can accomplish this coverage, when7.

Now that we know the limiting feature of the jagged E to be the afiglee can create environments
that are searchable by particulassearchers. Figures 3(c), 3(d), & 3(e) show the cases Wherf, 0 = 7,
andé = 3@{, respectively. A9 approacheg, so does the required FOV, although wites =, B becomes
visible from the vertical corridor, and so the required FOV is much smalteyeheral, we have the following
result:

Lemma 1. Given anglesh; and ¢o, With0 < ¢o < ¢1 < 7, there exists a non-empty set of polygonal free
spaces that can be searched by a sinfjlesearcher, but not by a single,-searcher.

Proof. Construct a jagged E with = ¢;. The resulting polygon can be searched hy; esearcher, but not
a ¢o-searcher. O

In summary, we have shown thatiesearcher’s capability to clear an environment depends on its FOV.
Furthermore, we have shown thatsearcher capability varieontinuouslywith the value ofp. We have
also provided a tool, the jagged E, that can be used to congtsyeecific environments for any € (0, 7).



3.2 Complexity of the general problem

It is known that for Parsons’s problem, establishing the minimum numberao€isers required to search a
given graph, known as theearch numbeof the graph, is NP-complete (Megiddo et al. 1988). Guibas et
al. (1999) showed that the visibility-based pursuit-evasion problem2siteearchers is also intractable, by
use of the following equivalence:

Guibas et al.’s (1999) Lemma 1For every planar graplz, there exists a polygonal free spaEesuch that
Parsons’ problem oidx is equivalent to the visibility-based pursuit-evasion problem [&ithsearchers] on
F.

Figure 4 shows how a graphi can be mapped onto an equivalent polygonal free spabg making
nodes into convex rooms and edges into “kinked” hallways. Each halas a kink, or bend, in the middle,
such that the searcher cannot see from one end of the hall to theAsteeresult, to clear a hall, the searcher
must walk its entire length, just as with an edgesin

The kink removes all advantages of visibility, and thus has the same effé¢bed-searcher as it does
on the2r-searcher, regardless of the valuepofSince any planar graph can be mapped onto an equivalent
polygonal free space, and since computing the search number of agtapk with maximum vertex degree
3 is NP-complete (Monien & Sudborough 1988), we can make the followingrgdization of Guibas et al.’s
(1999) complexity result:

Corollary 1. Given any field of view) and a polygonal free spack, computing the minimum number of
¢-searchers required to seardh is NP-hard.

4 A complete algorithm for a single¢-searcher

Since, by Corollary 1, we cannot easily determine the minimum numbe+sefarchers required to search
a given environment, we focus initially on the case of controlling a siggdearcher. In this section, we
present a complete algorithm for the case of a singkearcher. That is, we are interested in finding a
trajectory for a single-searcher that will search a given polygonal free spgacender the assumption that
such a trajectory exists. We address the extension to multiple searchers later

Guibas et al. (1999) gave a complete algorithm for the case of a @negearcher. Their algorithm does
not suffice for ap-searcher withy < 2m, nor can it be easily extended to handle this case, for two reasons.
First, the orientation of the searcher must be taken into account, whichnpses different configuration
space. Second, and more importantly, the searcher’'s FOV inducesndeslifferent visibility constraints
that are not captured by Guibas et al.’s (1999) decomposition. Howereeborrow from their work in
several ways.

We follow an approach known in the robot motion planning literatureesct cell decomposition
(Schwartz & Sharir 1983, Leven & Sharir 1987, Avnaim et al. 1988pbde 1991): decompose the robot’s
(searcher’s) configuration spae= R? x S' into a set of non-overlappingon-critical cellswith critical
boundaries Intuitively, nothing “critical” can happen as the searcher moves withinl avdeereas “critical”
events can occur when the robot crosses a boundary. As a ressdtattoier can be restricted to trajectories
on the cell boundaries. We formalize the meaning of “critical” for the limited-RDY¥5uit-evasion problem
in the next section.

2Actually, the minimum required FOV is slightly smaller thanbut can be made arbitrarily close foby narrowing and
extending the middle horizontal corridor that leads to the pBint
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Figure 5:A computed clearing trajectory forasearcher. In this case the searcher clears the environimentoving
backward out of the upper room, down the hall, and into thertefm (see also Extension 1).

The basic steps of our algorithm are: (i) by a series of partitions, retiacgiven free space into a
network of curves that represent the visibility constraints induced by thieomment and the searcher’s
FOV; (ii) construct arinformation graphthat encodes the possible information states of the problem as the
searcher moves, using the network of intersecting curves as a roatifraayiii) search this graph for a goal
state, and read the desired trajectory out from the resulting path. The kieig algorithm, and a primary
contribution of this paper, is the identification of the critical configuratiorceg@oundaries; it is only by
crossing these boundaries that the searcher will change the inform@ierm&the problem.

4.1 Identifying critical changes in information state

The area visible to @-searcher when it is positioned at a pginith orientationd in F'is called itsvisibility
polygon Vy(p, 0), abbreviated td” wheng, p, andé are clear from the context. When a paijniies within
V', we say thay is in view (Figure 6). The visibility polygon is defined by a set of line segments, some of
which lie on the boundary of and some of which do not. The latter segments, which cross through the
interior of I, are calledyap edgegFigure 2(b)). These edges, combined with the edgds édrm aplanar
mapthat partitions the free space bfinto a set ofregions

We can attach to each region a binary label that indicates whether it is ‘®8eor(contaminated (“1”).
Some who have previously studied pursuit-evasion used the same labélemges¢Lee et al. 2002), while
others labeled the gap edges, rather than the regions (Guibas et 3l.\M@939odel the information state of
the problem asp, 9, B(p, 0)), where(p, 6) is the searcher’s pose ait{p, ) is the list of binary labels on
the regions induced by its gap edges.

Consider Figure 5, which depicts a computed search trajectory for a sirggarcher in an office-



like environment. At each step, the environment is partitioned into finitely magigne by the searcher’s
visibility polygon. There is at most one region that is currently within the $eai€ view, which must be
clear, and some other regions that are out of view, each of which mayhee elear or contaminated. In
the figure, the in-view region is colored light gray, and the out-of-viegvaes are colored either white (if
clear) or dark gray (if contaminated). For example, in Figure 5(c), tagrdhree clear regions (including
the one currently in view), and three contaminated regions. So the asddcimienation state might be:
((5,2), %’T, {1,0,1,1,0,0}), assuming that the searcher is positionetba?) with orientation%“, and that
the regions are ordered appropriately.

Because they are induced by the searcher’s visibility polygon, regamsary in size and shape as the
searcher moves. Regions retain their ordering and contamination labelghitsoch deformations, so the
information state does not undergo a critical change. We need only téke mden the information state
changesombinatorially that is, when a region is created or destroyed, or when a region’sdaheges.

A combinatorial, or critical, change in information state corresponds to a nfdte searcher that changes
the topology of contaminated space. During such a move, one or more gep wil: disappear, split, or
merge (it can also happen that a new gap edge appears during a moweylgap edges always border clear
space, and so such a move does not change the topology of the contdrspete). We can characterize
critical changes in information state with the following necessary condition:

Lemma 2. Given a singlep-searcher in a polygonal free spaég there can be a change in the topology of
the contaminated space i only if there is a change in the set of verticegrothat lie in V.

Proof. We treat the three cases separately:

1. Edge disappearance. For a gap edge to disappear, one of two events must occur. Either the
concave vertex of” that induced: moves out ofi’, or e becomes coincident with the boundaryof
and terminates at a previously non-visible convex verteX.din the first caseg disappears because it
falls out of view (and thus is no longer part@); in the second case disappears because it becomes
part of the boundary of' (and thus is no longer a gap edge).

2. Edge splitting. A gap edge: can be split only if a previously non-visible concave vertexokaywv,
moves intol” such thaw lies one. The gap edge will then split into two new edges, with the first
terminating aty and the second originating at

3. Edge merging. Merging is simply the reverse of splitting. Two gap edgésande2 can merge only
if el terminates at the same concave verteX'pfayv, from whiche2 originates, and moves out of
V. The result is a single new edge, having the same origii as

In each case, at least one vertextofmoves into or out o¥/. O

This lemma tells us that any critical change in information state will be accompayi{edtoally, caused
by) a change in the set of vertices Bfthat lie within V. So we need to identify the points at which there
can be a change in the set of vertices that are in view.

Before continuing, we define two notions of visibility (Figure 6):

e mutually visible : Two pointsp andq aremutually visibleiff the line segment betweenandq does
not cross the boundary df (this is the traditional geometric notion of visibility). Equivalently, we
may say thap is visiblefrom ¢ or thatq is visiblefrom p.
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Figure 6:Examples of vertices that aite view, visible, and/or¢-visible, for ¢ = Z.

Figure 7:The partitionP, for a simply-connected polygon. The dashed lines are thasets used in the construction
of the partition (the boundaries of the polygon are also uield). Vertex visibility is constant within each resulting
cell.

e ¢-visible : A pair of points(p, q) is ¢-visible from a points iff there exists an orientation, say
for a ¢-searcher located atsuch that botlp andgq lie within V(s, #), with p andq ordered coun-
terclockwise about. That is, if we rotate a sweep line counterclockwise abotitrough the FOV
of a searcher positioned atwith orientationd, we encounter botp andq, with p coming before;
(angular ties are broken by distance frejn

Clearly, if (p, q) is ¢1-visible from s, then(p, q) is alsog,-visible from s for any ¢, > ¢1. Thus, if the pair
(p, q) is ¢-visible froms, thenp andq are also both visible frora (traditional visibility is just2z-visibility).

4.2 Decomposing the configuration space

We now decompose the searcher’s configuration spaceR? x S! into cells such that the searcher can
move within any cell without changing the set of in-view vertiée¥ve can then restrict our attention to
searcher trajectories that remain on the boundaries of these cells. Thmpiesition,Dy, proceeds in three
steps, which are described in subsequent sections:

1. Cast certain lines throughi to create the partitio®,.; within any cellr € Py, visibility of vertices is
invariant.

2. AugmentP; with certain arcs to create the partitiéh; within any cellr € Py, ¢-visibility of vertices
is invariant.

3Note that configuration spacellsare 3-dimensional structures, distinct from the 2-dimensimegibnsthat are used to track
contamination. Cells are not assigned contamination labels.



3. For each intersectiom between lines or arcs iRy, divide St into orientation intervals to create the
partition ¥, (p); for a ¢-searcher positioned atand oriented within any intervale ¥, (p), the set
of vertices that are in-view is invariant.

4.2.1 The partition P,

For each pair of mutually visible vertices andwv, of F' (including whenv; andwvy are endpoints of the
same segment df'), we construct the segmentvs, then extend this segment in either direction as far as
possible without crossing the boundaryfof The intersections of the resulting segments form a partition
of F' into a set of convex cells. The intuition behind this technique is that we identipfaees where the
set of visible vertices can change due to occlusion (Figure 7). Thiingspartition, P, has the following

property:

Lemma 3. Given any cell- from the partitionP,; of a polygonal free spacg, the set of visible vertices of
I is the same for all points in the interior of

Proof. Assume by contradiction that some vertexof F' is visible from a pointp and not visible from
another point, with bothp andgq in the interior ofr. Consider any continuous pathfrom p to ¢ such that
~ is contained in the interior of. Then there is some point along says (possibly equal t@), wherewv,
disappears from view. For this to occur, there must be another vertex sdiyvs, that occludes;. The
three pointa)1, vo ands will be collinear;v; andv, will be mutually visible; andy; ands will be mutually
visible. Then in the construction d?,, the extension of the segmentv, would pass throughk, which
means that does not lie in the interior of. Thus there is no path betweerand ¢ that remains in the
interior of r, which contradicts the assumption that bpthndgq lie in the interior ofr. O

4.2.2 The partition P,

We know that the set of visible vertices cannot change within arcellP,. However, forg < 2, it is still
possible for the set af-visible vertex pairs to change within a cell. We want to refine the partiipiso
that there is no change ifrvisibility of vertices as a»-searcher moves within a single cell. For this purpose,
we introducevisibility curves

Definition (Visibility curve). Given two points;; andw, in the plane and a sensor fielt) consider the set
of pointsp such that the paifv;, v2) is ¢-visible fromp. This set includes its boundary, which consists of
circular arcs that connect; andv, and is called theg-)visibility curve of v; andv,, denoted” (v, v2).

As can be seen in Figure 8(a), the visibility curve fox ¢ < 7 is composed of two arcs. Each arc
is part of a circle defined by the locus of points from which the segment subtends the angle (the
segment v is always a chord in each circle; when= 7 the two circles are the same and the segment
v1v9 IS @ diameter). To maintain visibility of both vertices from a point along this cuhasearcher must
be oriented toward the midpoint efv.. As ¢ approaches, these arcs flatten, until they meet to form a
single line whenp = . In this case, a-searcher positioned on the line must be oriented orthogonal to the
line in order to maintain visibility of; andwvs. As shown in Figure 8(b), forr < ¢ < 2, the visibility
curve is composed of the same two arcs afor ¢, but the orientation of the searcher is rotatedy
The curveCy(v1, v2) is undefined fog) = 27.

The importance of the visibility curve is that it makes concrete the constraintséddy the requirement
to maintain visibility of a given pair of vertices with @&searcher. Fob < ¢ < 7, the visibility curve is
the closest that a-searcher can approach two vertices while keeping them both in viewré8ju If the
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Figure 8:The visibility curveCy (v, v2) for two pointsv; andv,. Shown in (a) is the case when= %; these arcs
are the closest that §-searcher can come to the midpointi@f, while maintaining visibility of both points. Shown
in (b) is the case when = %’T; these arcs are the farthest that%-searcher can move after crossingv, while
maintaining visibility of both points. Three example poakmg each curve are shown, with the relevant portions of

the visibility polygons shaded.
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Figure 9:An example of how-visibility changes when crossing a visibility curve, for= 7. As the searcher crosses
Cz (v1,v2), it must lose sight of at least one of the two constrainingives (in this casey;).

searcher moves forward from a point on this curve, it will necessardly iasibility of at least one vertex.
Form < ¢ < 2w, the interpretation is slightly different: if two vertices are currently in view ang
searcher passes between them, the visibility curve is the farthest thattibbesecan travel while keeping
both vertices in view. When the searcher reaches a point on the visibilit cits blind spot becomes
wedged between the two vertices; any further forward motion will causeaat one vertex to fall out of
view.

We now refine our partition of" with a set of visibility curves. For every pair of verticesandvy of
F (including whenv; andwvs are endpoints of the same segmentdffor which there exists some point on
the curveC; (v, v2) that lies in the free space &f and from which(vy, v2) and/or(vs, v1) is ¢-visible, we
addCy(v1,v2) to F. The intuition behind this step is that we need only include those curves fitasent
visibility changes that can actually occur for a searcher moving thréudg¥or example, if the searcher can
never simultaneously see two vertices, then the visibility curve between therhdsmeaningful constraint
on the searcher’'s motion. For the same reason, we discard from eaehacly portion that lies outsidg.
It is possible to further prune the visibility curves by removing froéiy(v1, v2) anyportion from which one
or both ofv; andvs is not visible. This further pruning would speed up trajectory planninghas no effect
on the completeness of our algorithm.
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Figure 10:The partitionP, for a square free spacg, with ¢ = %’“ The dashed lines are the segments and curves

used in the construction of the partition (the boundariethefsquare are also included). Vertgwisibility is constant
within each resulting cell.

Note that whenp = =, the addition of visibility curves is redundant: the existence of a third point
on Cr(v1,v2) from whichv; andwvy are ¢-visible is equivalent ta; andwv, being mutually visible, and
Cr(v1,v2) is just the line throughy; andwvq, which was included in the coarser partition (hence the name
Py).

The intersections of the resulting arrangement of curves and lines fparition of " into a set of cells
(Figure 10). This partitionf;, has the following two properties:

Lemma 4. Given any cell- from the partitionF, of a polygonal free spacg, the set ofp-visible vertices
is the same for all points in the interior of

Proof. SinceP is a refinement of;, » must be contained within a single cell, say, of P.. As the set
of visible vertices cannot change withinp (Lemma 3), the set of visible vertices likewise cannot change
within r.

We are left to show that, among the (constant) set of visible vertices, tloé getisible vertices does
not change. Assume by contradiction that this condition does not holdrticgplar, assume that the vertex
pair (v1, v2) is ¢-visible from some poinp and notg-visible from some other point, with bothp andq in
the interior ofr. Thenp lies inside the set of points from which; , v2) is ¢-visible, whileq lies outside this
set, and so they must lie on opposite sides of the set’s boundary. Bubtivaddry,C'; (v, v2), is included
in the construction of’;, sop andg must lie in different cells, which contradicts the assumption that they
lie in the same celt. O

Lemma 5. Given any cellr from the partition P, of a polygonal free spacé’, any vertex pair that is
¢-visible from the interior of- is also¢-visible from the boundary of.

Proof. Assume by contradiction that the vertex pgif, v2) is ¢-visible from some poinp in the interior
of » (by Lemma 4, the particular choice pfmakes no difference), and netvisible from some poing on
the boundary of. Then, by the same reasoning given in the previous pgoafidg must lie on opposite
sides ofCy(v1, v2) (if ¢ wereonthat curve (v, v2) would still beg-visible), which implies that they lie in
different cells, contradicting the initial assumption. O

These lemmas tell us thaigasearcher that is positioned within a celtan move onto the boundary of
r without losing visibility of any vertices (it may gain visibility of some vertices). Aistpoint, to avoid

12



possible ambiguity, it will be necessary to order to the set of vertices thdaharew® For a¢-searcher
positioned ap with orientationf, we denote byS,(p, ¢) the ordered set of vertices &f that are in view
(i.e., in Vy(p,0)), sorted counterclockwise about the searcher (angular ties arerbipkdistance from
the searcher). For brevity we may abbreviate this sefasWe now show that a searcher positioned in
the interior of a cell can move to the cell’s boundary without removing ordeang any vertices that are
initially in view:

Lemma 6. Given any cell- from the partitionP,, of a polygonal free spacg, and a¢-searcher with pose
(p, #) such thap lies in the interior ofr, the searcher can move to any pojntn the boundary of without
removing or reordering any vertices ).

Proof. Consider any continuous pathfrom p to ¢ such thaty \ ¢ is contained in the interior of andgq is
visited exactly once (i.e., the pathintersects the boundary efonly atq, where it terminates). Each vertex
pair that is inS, (p, ) must beg-visible fromp and so, by Lemmas 4 & 5, also gevisible from all other
points oy (sincey is confined ta°). So it is possible for the searcher to move continuously atowghout
losing sight of any vertices. Furthermore, becagsasibility guarantees an ordering on each vertex pair, it
is possible for the searcher to move continuously alprsgich that no vertex pair ifi; is reordered. As a
result, the searcher can move frorto ¢ without removing or reordering any verticesSsp. O

This lemma tells us that we can move a searcher from the interior of a cell to itsla with the only
change inS, being theaddition of vertices ofF". To put it another way, a searcher that is positioned in the
interior of a cell may as well move to the cell’s boundary, for at the worstattex coverage will remain
the same. As a result, without loss of generality we can restrict our attenttbe twoundaries of the cells
of P4, and ignore their interiors.

Furthermore, no verticeS, will be removed or reordered as the searcher moves along a single compo-
nent (i.e., segment or arc) of the boundary of a cell; such a changenbanccur at the intersection of two
components. By moving to an intersection, the searcher is in fact movingtfreiterior to the boundary
of a larger cell that would exist if the boundary component along whichtitigeling were excluded from
the partition. So we can further focus our attention on the intersectiondl diocmdaries.

4.2.3 The partition ¥4(p)

Of course, the searcher may have to rotate as it m@@sibility only guarantees that it igossiblefor the
searcher to simultaneously see a given pair of vertices. In genera,dointp that is an intersection of
one or more cell boundaries, there will be an interval of orientation fachvthe set of vertices iy will
remain unchanged. Equivalently, for eaglvisible vertex pair(q, s), there is an interval of orientation for
which ¢ ands both lie inV. Intersecting any set of such intervals produces a smaller interval; tHeesima
intervals which we can obtain this way, when taken together, form a partifigh, 2pi). The intervals
produced by this partition} 4(p), have the following property: the set of verticeslinis the same for any
two orientations in the same interval.

So all orientations in a given interval, sayof V,(p) are equivalent, in the sense that there can be
no critical change in information as@searcher, positioned af rotates withini. We can identify each
orientation interval by a pair of vertice®s,t, viast ), Which are, respectively, the first and last vertices in
view, according to the order in which each vertex is encountered by rgtativeep line counterclockwise

“Wheng > =, it may be possible to change the information state by wedging the searoliveat spot between different vertex
pairs. In this case, only trerder of the in-view vertices will change, and so we must keep track of thigdod®e able to distinguish
among these information states.
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through the searcher's FOV. Without loss of generality, we can assusmha #hisearcher that is oriented
within an interval(vg.st, v1ast) IS @lways oriented such that either its minimum FOV boundary intersects
varst, OF ItS maximum FOV boundary interseatgs;.

It can happen that fewer than two vertices are in view within an interval, inlwtasevs,s; and/orvy,q;
can be)). Then the order of the intervals is used to determine the appropriate orient@gy, for example,
thatv; andv, are the only vertices visible from and that(vy, v2) is ¢-visible fromp; then¥ ,(p) might be
{(v1,v2), (v2,0), (0,0), (0,v1)}. In this case, the third intervall), ), orients the searcher toward the wall
betweerw; andwv,, without either vertex being in view.

4.2.4 The decompositionD,,

Putting it all together, we use the partitions described above to form thempesitionD,, of the searcher’s
configuration spac€ = R? x S'. The arcs and lines aP, decompos& with respect to the searcher’s
position. For each poini that is an intersection of two or more lines or arcy the intervals of¥,(p)
further decomposé with respect to the searcher’s orientation. This decomposition has polylhomany
cells:

Theorem 1. Given a polygonal free spad€ with n vertices, the number of cells in the decompositign
is O(n?).

Proof. If all pairs of vertices inf” are mutually visible (e.g £ is a regular polygon), then the construction
of P, will cast one line from each vertex through each other vertex, resultiﬁéﬁflﬂlﬁ) lines. Each line can
intersect each other line at most once, which gi¥és*) line/line intersections ;.5

Similarly, P, can add at most 2 arcs between each pair of verticego+ 1) arcs in total. Each arc can
intersect each other arc at most twice, which gi@€a*) arc/arc intersections. Each arc can also intersect
each line at most twice, which givéxn*) arc/line intersections. So we have a totatxf»*) intersections
in P¢.

If a searcher positioned at an intersectiomakes one full rotation, each vertexhat is visible fromp
can enter the searcher’s FOV at most once and exit its FOV at most Bachk.entry / exit will induce one
orientation interval in the partitiod ,(p). If all n vertices ofF" are visible fromp, thenW¥4(p) can have
at most2n, or O(n), intervals. Since there ar@(n*) intersections and(n) intervals per intersection, we
haveO(n%) cells in all. O

4.3 Building the information graph

We now have the roadmap along which the searcher will travel as it movasggythf’, and we can build a
directedinformation graph GGy, that encodes all possible critical changes in the information state. We add
to G; a node for each possible region labeling that can result from placingttrelger at an intersectign
and rotating it through each orientation intervaliig(p).

We add toGG; edges that correspond to the feasible changes in information state. &imnstigt define
the actions that are allowed for the searcher. Assume the searcheitisngeasat an intersectiop, and
oriented within an interval defined Ky, viast ). This searcher can:

1. Rotate into any adjacent orientation interval.

®A tighter bound ofO(n®) is possible here (Guibas et al. 1995), but the difference will be of neeguence in our analysis.
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Figure 11:For a ¢-searcher with the pose shown here, each “tooth” induces gaqe edge, and thus one region in
the contamination map. If this polygon hawertices, then it haé‘;—4 teeth, which inducé*;—4 regions (depending on
the value ofp, there will be either one or two additional regions). Sineele region can take one of two labels, there
are 2("z%) possible labelings, which establishes the tightness dbtimd given in Theorem 2.

2. Translate along the length of any boundary compoaertident top such that the orientation interval
(varst, Vast) IS valid at the opposite end of During the move the searcher servos its rotation so as to
maintain visibility of bothvg,st anduv.g (and thus all vertices in between).

For each node in Gy, for each allowable action, we determine the information state that would result
from executing: in configuratiom, and add an edge fromto the node that encodes the new state. Given an
initial information state and a chosen action, the new information state can beitaxhgs follows: the gap
edges are determined by rotational sweep line and the induced planar neagtisicted using a traditional
sweep line. In the new map, a regiers clear (labeled “0”) if either» is currently in view (because the
regions are defined by the searcher’s visibility polygomill be either entirely in view or entirely out of
view), orr does not intersect any contaminated region in the old map, from the prémfousation state.
Otherwisey is contaminated (labeled “1”).

Theorem 2. Given a polygonal free spadéwith n vertices, the grapliz; hasO(2") nodes, and this bound
is the best possible.

Proof. For a¢-searcher positioned at an intersection, sa9f P, and oriented within an interval, sayof
U, (p), eachin-view vertex can induce at most one gap edge and thus at reastéon in the contamination
map. Each region in the map can take one of two labels, and each labelingroldista~ ;. If all n vertices
are in view, then there can be at mestegions and thu®(2") labelings for each of th@(n®) cells in Dy,

or O(2™) nodes inG;. Figure 11 shows a polygon amdsearcher pose that induce (at Ie@éﬁ%) region
labelings, for any: and anyg, establishing the tightness of the bound. Ol

If we can bound by: the maximum number of vertices that are visible from any poirff jithen there
will be O(2¥) labelings for each of th@(n°) cells, and> will be polynomially, rather than exponentially,
large inn:

Corollary 2. If at mostk of F's n vertices are visible from any point ifi, then the graptG; hasO(n°2F)
nodes.

Given an information state from which to start, we can then se@jclor a goal state, which represents
all of F' being clear. In a start state, all in-view regions are clear and all otheisoataminated. In a goal
state, all regions are clear. Given a feasible path thraeiglfirom start to goal, we can read from it the
required searcher trajectory, as a series of in-place rotations astitaioed translations. We now establish
the completeness of this approach:
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Theorem 3. An algorithm that will find any path to a goal vertex from a start verteXsinis complete for
the visibility-based pursuit-evasion problem with a singlsearcher.

Proof. Given a polygonal free spadeé and a singlep-searcher, take any solution trajectory, sayOur
goal is to mapr onto an equivalent path i¥;. That is, we wish to show thatcan be transformed into an
equivalent trajectory along the curves that make up the roadmap useasinueiingG ;.

Denote by(p, #) the searcher’s pose at the startroflf p lies in the interior of a celt in P4 then, by
Lemma 6, we can move the searcher to any point on the boundanywathout losing or reordering any
in-view vertices ofF’. In particular, we can move the searcher to any intersection along theléguof
r. If p already lies on a cell boundary, then we can slide the searcher alonigotivadary to the nearest
intersection, again without losing or reordering any in-view vertices.

As T progresses, we can replicate its moves within our roadmap in the followingWiaije ~ remains
in the interior of a cell, we keep the searcher at an intersection,gan the boundary of, and achieve
any necessary changes in vertex visibility by simply rotating the searclorgiiits orientation intervals.
If 7 crosses into an adjacent cell such thatg is also on the boundary of, we can continue to rotate
the searcher in place. If, on the other hagds not on the boundary af, we move the searcher along
any boundary component that is incident to bgthnd some other intersection, s@ythat does lie on the
boundary of’. During this translation, the searcher’s rotation is controlled so as to renithin Vts current
orientation interval and not lose or reorder any in-view vertices (Lemmaa6agtees that this is possible).

In this way, we create a new trajectorythat moves along the roadmap and is at as least as goad as
Thatis,Sy4 at each point on’ is a superset o, at the corresponding point an Compared to-, a searcher
moving alongr’ may see additional vertices, but it will never miss any, nor will it see them iifferent
order. As we can construct a solutiehgiven any solutiorr, the algorithm is complete. O

5 Implementation and computed examples

We have implemented and tested the algorithm described above, usingthecGmputational geometry
library (Burnikel et al. 1999). For reasons of efficiency and coieece, our implementation computes
trajectories only for the case of = w. In this case, the roadmap i, consists only of linear objects,
and so the underlying geometric computation can be done with rational nunileers.-~ 7, circular arcs
are introduced, and the exact computation of their intersections requiresséhof arbitrary precision real
numbers, which are far slower to work with than rationals. Efficiency eorgaside, the case ¢f= «

is of particular interest and value to roboticists, because a sensor tlmahisanly found on robots today
is a scanning laser range-finder witi &)° FOV (e.g., the SICK LMS). So trajectories computed by our
implementation can be executed directly on holonomic robots that are equifihexlich sensors.

Contrary to the description given above, we do not actually construof &ll; prior to the search, but
rather construct it on the fly, adding nodes and edges as nece3$ésytechnique provides a significant
speedup, for the full graph contains many irrelevant information stagesethas some unreachable ones.

We now present some computed exam§lds. all the figures, light gray areas are currently in view
(and thus clear), white areas are clear (but not in view), and daykageas are contaminated. For reasons
of space, not all steps in each trajectory are shown. For clarity oéptatson, the searcher’s approximate
trajectory is shown in the last frame. Shown in Figures 5 & 12 are officedikeronments composed of

6Animations of these and other computed examples can be founbttati/ai.stanford.edu/~gerkey/research/pe and in
Appendix A.
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Figure 12:A computed clearing trajectory fora-searcher in an office-like environment (see also Exter&jon

hallways connecting rooms. Shown in Figure 15 is a more complex enviranfoewhich the computed
trajectory had 42 steps.

6 Extensions and further examples

Since we may want to search environments that cannot be searchethgleassearcher, it is important to
consider how we can extend this algorithm to handle multiple searchers. &nis v include in the con-
struction ofG; the joint configuration space of all searchers. Unfortunately, thiso@gpris not complete.
The reason is that the visibility polygons of multiple searchers can interdab\arlap in such a way that
the information state can change without any searcher crossing a cetldrgun ;. It is easy to construct
environments in which two searchers will clear a portion of the environmihout realizing it (see Guibas
et al. (1999) for an example). On the other hand, we have not yetiatexed an environment for which this
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Figure 13:This example, with one loop, is the simplest environmeritrdtauires twor-searchers to clear. In this
case, the searcher in the upper left corner remains statign@atching the upper and left corridors, while the other
searcher moves to clear the right and lower corridors (ses &xtension 3).

Figure 14:A computed clearing trajectory for twe-searchers in a sensor-based map of a corridor with two andifmj
rooms. The trajectory was computed from a manually-geedréiborplan-style approximation of this sensor-based
map. In this case, one searcher moves to the left end of thedmal turns around to cover the hall while the other
searcher sequentially clears the two rooms. This trajectwas executed by two Pioneer mobile robots (see also
Extension 4).

incompleteness actually causes the algorithm to fail to find a solution wherxistg, @nd we believe that
such cases are rare.

A more serious drawback to extending our algorithm to multiple searchers iwdyiss that the joint
configuration space grows exponentially in the number of searchees. iEwimple environments and with
only two searchers, the information gra@h requires a prohibitively large amount of memory to store and a
correspondingly long time to search. Nevertheless, we have implementextérision; shown in Figure 13
is a simple loop environment that requires two searchers to clear (a sisglarcher is incapable of clearing
any loops, even whett = 27). We used the multi-searcher extension to compute this solution, in which
two searchers work together to clear the environment. It is possible togestmpleteness by constructing
a new information graph that accurately reflects the possible changeoimatfon induced by multiple
searchers, but this change would further exponentially increasedbé&epr difficulty.

There are other avenues for extension that concern the capabilitiebaiér For example, there is no
physical sensor that can provide target detection over an unlimited.réinipe searcher’s sensor range is
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short enough to make a difference in a given environment (e.g., a Esge-finder in a building with very

long corridors), then we must account for the range, or risk gengratin-solution trajectories. We can
incorporate into the algorithm a limited range sensor (or indeed, any smiostal) by modifying the step in

which the contamination map is updated during the construction of the informatiph.gThe limited-range

¢-searcher will have a different visibility polygon, which will induce diféet map. Again, this extension
comes at the expense of completeness, for there are now distanifec yibility constraints that are not

captured in our cell decomposition.

Another extension is to allow for non-holonomic constraints on the searCluersider for example, a
two-wheel differentially-driven robot, which can translate forward &#ackward and rotate in place, but
cannot translate sideways. One way to account for this constraint is tdyntbd construction of the
information graph to allow only moves that can be executed by a differentalhen robot. Then any
computed trajectory will be a feasible solution. We could go further with thislgeastricting the robot to
move only within the FOV of its evader sensor. If the the robot uses the samsersfor obstacle avoidance
as for evader detection (this is often the case), such a restriction would foaknore robust solutions
by never requiring the robot to drive blindly, which would force it to rely the accuracy of the map for
collision avoidance.

Figure 14 demonstrates the application of this modified algorithm to a team of teredgsipped Pio-
neer mobile robots (Figure 1(a)) searching a hallway with two adjoiningnsodn this case, we manually
generated a floorplan-style approximation of the learned sensor-bagedhown in the figure (the robots
used the original map for localization during the trajectory execution). We plenned for two searchers
in the resulting, simplified map, using the pruned configuration space ded@iimve. The resulting coop-
erative strategy was executed on the robots: one robot coveredllivayhanhile the other searched the two
rooms in succession.

Not surprisingly, these extensions also sacrifice completeness. A comlgletithm for a non-holonomic
searcher would have to answer the following non-trivial motion plannirggtjon: given a robot with non-
holonomic constraints and a fixed sensor orientation, does there exasibléetrajectory from posd to
poseB such that a set of points remain in view en route?

7 Summary

We have presented a novel form of the visibility-based pursuit-evasadsigmn by introducing a new class

of searcher, the-searcher which we chose because it can readily be instantiated as a physical mobile
robot. Because the-searcher is qualitatively different from the previously studiesearcher, existing
algorithms do not suffice. As part of a detailed analysis of this new kindeafcher, we showed that
computing the minimum number af-searchers required to search a given environment is NP-hard and
derived the first complete search algorithm for a singgearcher. We showed how this algorithm can be
extended to find strategies for multiple searchers by planning in their joifigooation space, and gave
examples of computed trajectories for single searchers and for teams séanahers. While the algorithm
applies top-searchers with arbitrary fields of view, for reasons of simplicity andiefiicy we restricted our
implementation to the special caseof .

Planning in the joint configuration space of all searchers is clearly ndtgsieapproach, as it is central-
ized and scales badly as the number of searchers increases. Werantlgdesigning more parsimonious
techniques for coordinating multiple searchers, such as distributed rtegoti@erkey et al. 2005). For
example, if a searcher encounters a hallway with many contaminated roonag;, &sk of another searcher,
“Watch my back from the end of the hall while | clear these rooms.” It is irstang to note that this kind
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of cooperative mini-strategy arises naturally in the joint configurationesplams. We are investigating the
possibility of learning from these plans such higher-level primitives adctweny back” and “guard this
intersection.”
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A Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the liykefrom www.ijrr.org:

Extension | Media type | Description
1 Video Example 1: Oner-searcher clears two rooms connected by a hallway.
2 Video Example 2: Oner-searcher clears a U-shaped office-like environment.
3 Video Example 3: Twar-searchers clear a loop.
4 Video Example 4: Two laser-equipped Pioneer robots clear two rooms conngcted
by a hallway.
5 Video Example 5: Oner-searcher clears an environment with four alcoves.
6 Video Example 6: Oner-searcher clears three rooms connected by a hallway.
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Figure 15:In this more complicated example, thesearcher first clears the left hand side from top to bottdment
moves through the horizontal hallway to clear the right hardg, from top to bottom (see also Extension 5).
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