
In Intl. J. of Robotics Research 25(4):299-316, April 2006

Visibility-based pursuit-evasion with limited field of view∗

Brian P. Gerkey† Sebastian Thrun‡ Geoff Gordon⋄

gerkey@ai.sri.com thrun@stanford.edu ggordon+@cs.cmu.edu

† Artificial Intelligence Center, SRI International
‡ Artificial Intelligence Lab, Stanford University

⋄ Center for Automated Learning and Discovery, Carnegie MellonUniversity

Abstract

We study the visibility-basedpursuit-evasionproblem, in which one or more searchers must move
through a given environment so as to guarantee detection of any and all evaders, which can move ar-
bitrarily fast. Our goal is to develop techniques for coordinating teams of robots to execute this task
in application domains such as clearing a building, for reasons of security or safety. To this end, we
introduce a new class of searcher, theφ-searcher, which can be readily instantiated as a physical mo-
bile robot. We present a detailed analysis of the pursuit-evasion problem usingφ-searchers. We present
the first complete search algorithm for a singleφ-searcher, show how this algorithm can be extended to
handle multiple searchers, and give examples of computed trajectories.

1 Introduction

We address the problem known aspursuit-evasion. The goal is to direct the actions of one or moresearchers
through a given environment in such a way as to guarantee that anyevaderspresent in the environment will
be found. As an example, consider the problem of closing a museum for thenight. In order to be sure that no
thieves or other malcontents remain inside after closing, the guards must perform a thorough search of the
building. They must keep in mind that intruders are mobile and may try to avoid the guards. For example, if
a guard is checking each room along a hall, an intruder might sneak behindthe guard while he is checking
one room and hide in a room that was already checked. In this case, onesolution might be to use two guards,
with one always keeping watch on the hall.

Our goal is to derive strategies for robots that allow them to play the role of guard. In particular, we are
interested in techniques for coordinating the actions of teams of robots to clear entire buildings. In this paper,
we establish an analytical foundation for studying this problem by introducingthe concept of aφ-searcher,
which is a robot equipped with aφ-radian field of view (FOV) sensor for detecting evaders. Our motivation
for focusing on sensors with limited FOV is that we wish to derive strategies for robots, and most robots are
equipped with such sensors. For example, the popular Pioneer mobile robot is often equipped with a180◦

array of sonars (Figure 1(a)). Many robots carry more sophisticatedsensors, such as laser range-finders
(Figure 1(b)) or cameras (Figure 1(c)), but these too tend to have limited FOV.

∗This paper is an extension of work originally reported in: Gerkey, B. P.,Thrun, S. & Gordon, G. (2004), Visibility-based
pursuit-evasion with limited field of view,in ‘Proc. of the Natl. Conf. on Artificial Intelligence (AAAI)’, San Jose, California,
pp. 20–27.

1



(a) (b) (c)

Figure 1: Some robots equipped with common sensors with limited field of view: (a) sonar array, (b) laser range-
finder, and (c) camera.

So theφ-searcher reflects the realities of physical robots and thus the techniques we develop can be
applied to robots. Furthermore, the visibility characteristics of theφ-searcher are sufficiently different from
those of previously studied searchers to warrant the analysis that we present here.

After formally describing the pursuit-evasion problem, we analyze the capabilities of theφ-searcher and
show that computing the minimum number ofφ-searchers required to search an environment is NP-hard.
We then present the first complete search algorithm for the case of oneφ-searcher in a known polygonal
environment. The key to this algorithm, and the primary contribution of this paper, is the identification
of an exact cell decomposition of the searcher’s configuration space that reduces the original continuous
problem to an equivalent discrete problem. We show how the algorithm can be extended to handle multiple
robots (albeit at a loss of completeness). We have implemented and tested this algorithm in a variety of
environments and present example solution trajectories.

2 Background and related work

Pursuit-evasion problems have long been studied from the perspective of differential game theory (Isaacs
1965, H́ajek 1975). Given motion models for a pursuer and an evader that move in the open plane, the goal
is to determine the conditions necessary for them to collide. Parsons (1976)introduced a rather different
formulation (referred to hereafter asParsons’s problem) in which the domain is restricted to a discrete graph.
Nothing is known about the location or motion of the evader, who is assumed to be able to move arbitrarily
fast through the graph. His motivation was the problem of coordinating a search team to locate a spelunker
who has become lost in a network of caves (which can be represented bya graph), but these worst-case
assumptions about the evader could equally well describe a more adversarial situation. The spelunker, or
evader, can occupy any edge in the graph; to find the evader, a searcher must walk along the edge occupied
by the evader and “touch” the evader. The entire graph is initiallycontaminated, which means that the
evader could be anywhere. As the search progresses, an edge isclearedwhen it is no longer possible for the
evader to occupy that edge. Should it later happen that the evader couldhave moved back to a previously
clear edge, that edge is said to berecontaminated. Using this terminology, the goal of the problem can be
restated as follows: find a trajectory for each searcher such that the entire graph is cleared.

A visibility-based version of Parsons’s problem was introduced by Suzuki & Yamashita (1992), who
changed the domain from discrete graphs to continuous polygonal free spaces and coined the termk-
searcher. In this formulation, in order to find an evader, ak-searcher need not touch the evader, but can
instead “see” the evader from a distance. Thek-searcher is equipped withk infinitely thin “flashlights” with

2



(a)

D

E

A

B

C

(b)

Figure 2:Introduction to theφ-searcher. Shown in (a) is an example of aπ-searcher positioned at a pointp with an
orientationθ in a polygonal free spaceF . The shaded region is the searcher’s visibility polygon,Vπ(p, θ). Shown as
dashed lines in (b) are the induced gap edges for thisπ-searcher, which partition the free space into 5 regions (labeled
A–E).

which it can search the environment. These flashlights have unlimited range (but cannot see through walls)
and can be freely rotated about the searcher at bounded speed and independently of the searcher’s motion.
Commonly studied are the cases whenk = 1, k = 2, andk = ∞ (LaValle et al. 1997, Guibas et al. 1999,
Lee et al. 2002). The∞-searcher can see in all directions at once. A recent interesting resultis that any
polygonal free space that is searchable by a single∞-searcher is also searchable by a single 2-searcher (Park
et al. 2001), implying some parity of capabilities between the two. Randomized pursuit algorithms have also
been studied, in both discrete graphs (Adler et al. 2003) and polygonalfree spaces (Isler et al. 2005).

There has also been some work on forms of pursuit-evasion with physicalrobots. Roy & Gordon (2002)
model the single-robot action-selection problem as a POMDP, which is made tractable by compression of
the sparse belief space. A similar probabilistic framework is employed by Vidalet al. (2002), who use
heuristic search to find strategies for coordinating teams of air and groundvehicles to search an unknown
outdoor environment. Kalra et al. (2005) use a synthetic market to coordinate the actions of a team of robots
executing a “security sweep” of an indoor environment. More distantly related is the large body of work
on cooperative tracking of moving targets with fixed sensors and/or mobile robots (Parker 1999, Werger &
Mataríc 2001, Jung & Sukhatme 2002, Stroupe 2003, Spletzer & Taylor 2003).

As the velocity of the evader approaches zero, the pursuit-evasion problem can be seen as a problem
of multi-robot exploration, which has been extensively investigated (Koenig & Simmons 1993, Yamauchi
1998, Burgard et al. 2000). Similarly, as the number of available robots grows large with respect to the size
and complexity of the environment, pursuit-evasion can be solved by findingstatic sensor placements that
cover the entire environment. This is known as the Art Gallery problem, and has been studied in great depth
(O’Rourke 1987, Shermer 1992).

To our knowledge, limited-FOV pursuit-evasion represents an open problem that has not been previ-
ously addressed. Existing analytical work is concerned with some form ofthe k-searcher, while existing
experimental work with robots lacks the rigorous analysis and formal results that we present here. The
pursuit-evasion algorithms developed to date are not applicable to the problem that is the topic of this paper.

3



3 Theφ-searcher

We introduce a new class of searcher, theφ-searcher. Theφ-searcheris a holonomic (i.e., omnidirectional
drive) mobile robot that moves in the plane and is equipped with a limited FOV sensor having angular
apertureφ ∈ (0, 2π). The sensor has unlimited range, but cannot penetrate obstacles. This robot can move
(i.e., rotate and/or translate) at bounded speed. Asφ → 2π, we have an∞-searcher; asφ → 0, we have a
1-searcher. For0 < φ < 2π, however, we have a different kind of searcher. Since the sensor’s FOV can be
freely rotated about the searcher at bounded speed and independently of the searcher’s motion (this follows
from the holonomic capability of the robot), the capabilities of theφ-searcher lie somewhere between those
of a 1-searcher and those of a 2-searcher. Shown in Figure 2 is an example of aφ-searcher, forφ = π.

Given a connected polygonal free spaceF , the pursuit-evasion problem is to find a trajectory throughF

for φ-searchers that guarantees detection of anevaderwhose trajectory and initial location are unknown.1

The evader can be arbitrarily small (even a single point) and can move arbitrarily fast, but continuously,
throughF . Analogously to the graph search problem, any part ofF where the evader can be hiding is called
contaminatedand any part ofF where the evader cannot be hiding is calledclear. Whenever there exists a
path between contaminated space and clear space, that clear space is saidto berecontaminated. The space
F is initially contaminated and the goal is to clear it.

3.1 Capabilities of theφ-searcher

We can circumscribe the capabilities of a singleφ-searcher with the observation that a polygonal free space
F is searchable by a singleφ-searcher only ifF is simply-connected. IfF contains at least one hole, then
an evader can elude a single searcher by moving to keep the hole between them.

A singleφ-searcher is limited to searching simply-connected environments, but it cannot search all such
environments. Given two anglesφ1 andφ2, with φ1 > φ2, it is clear that any environment that can be
searched by aφ2-searcher can also be searched by aφ1-searcher (e.g., theφ1-searcher can execute the same
trajectory as did theφ2-searcher). Less obvious is whether there exists an environment that can be searched
by φ1-searcher, but not by aφ2-searcher. That is, does searching capability actually increase with a greater
FOV?

We can answer in the affirmative by use of the polygon shown in Figure 3(a), which we call the “jagged
E” (inspired by a similar environment due to Suzuki & Yamashita (1992)). Consider the pointsA, B, and
C: any φ-searcher pose that provides coverage ofA or of C leaves open an uncovered path between the
other two points. This is true, regardless of the value ofφ, even forφ = 2π. As a result, it is only possible
to search the jagged E in one of two orders:A → B → C, or C → B → A. While clearingB, the searcher
must not allow an uncovered path betweenA andC. All other orders (that do not end in one of the given
two sequences) would allow earlier work to be undone. For example, if the searcher were to use the order
B → A → C, the pointB would necessarily be recontaminated byC while the searcher is clearingA.

Assume without loss of generality that aφ-searcher has clearedA and will now clearB. In order
to avoid recontamination ofA, the searcher must not allow any uncovered path fromC to A. In other
words, the searcher must simultaneously coverB and the vertical corridor on the left of the jagged E. Such
coverage is not possible for all values ofφ. In fact, the minimum required FOV is equal to the angle labeled

1It may be the case with physical robots that the available map, having beenacquired from sensor data, is grid-based, rather
than polygonal. If so, then the first step is to generate an approximate polygonal representation of the grid-based map, either
automatically (e.g., via smoothing and line-fitting) or manually (e.g., with theaid of an architectural floorplan).

4



A
B D

θ C

(a) (b) (c) (d) (e)

Figure 3:Shown in (a) is the “jagged E,” which demonstrates howφ-searcher capability varies continuously with the
searcher’s field of view. To search this environment, aφ-searcher must be able to simultaneously cover the pointB

and prevent an uncovered path betweenA andC. The minimum value ofφ required for this coverage is equal to the
angleθ. By varyingθ, we can create environments that require aπ

4 -searcher (b), aπ
3 -searcher (c), aπ

2 -searcher (d),
a 3π

4 -searcher (e), or any otherφ-searcher, for0 < φ < π.

Figure 4:Mapping a planar graph of nodes and edges onto an equivalent polygonal free space of rooms and hallways.
The visibility properties of the original graph are preserved by introducing an occluding kink in each hallway.

θ in Figure 3(a): aθ-searcher positioned atD can simultaneously coverB and the vertical corridor.2 For
example, Figure 3(b) shows how aπ

4 -searcher can accomplish this coverage, whenθ = π
4 .

Now that we know the limiting feature of the jagged E to be the angleθ, we can create environments
that are searchable by particularφ-searchers. Figures 3(c), 3(d), & 3(e) show the cases whenθ = π

3 , θ = π
2 ,

andθ = 3π
4 , respectively. Asθ approachesπ, so does the required FOV, although whenθ = π, B becomes

visible from the vertical corridor, and so the required FOV is much smaller. In general, we have the following
result:

Lemma 1. Given anglesφ1 andφ2, with 0 < φ2 < φ1 < π, there exists a non-empty set of polygonal free
spaces that can be searched by a singleφ1-searcher, but not by a singleφ2-searcher.

Proof. Construct a jagged E withθ = φ1. The resulting polygon can be searched by aφ1-searcher, but not
aφ2-searcher.

In summary, we have shown that aφ-searcher’s capability to clear an environment depends on its FOV.
Furthermore, we have shown thatφ-searcher capability variescontinuouslywith the value ofφ. We have
also provided a tool, the jagged E, that can be used to constructφ-specific environments for anyφ ∈ (0, π).

5



3.2 Complexity of the general problem

It is known that for Parsons’s problem, establishing the minimum number of searchers required to search a
given graph, known as thesearch numberof the graph, is NP-complete (Megiddo et al. 1988). Guibas et
al. (1999) showed that the visibility-based pursuit-evasion problem with2π-searchers is also intractable, by
use of the following equivalence:

Guibas et al.’s (1999) Lemma 1. For every planar graphG, there exists a polygonal free spaceF such that
Parsons’ problem onG is equivalent to the visibility-based pursuit-evasion problem [with2π-searchers] on
F .

Figure 4 shows how a graphG can be mapped onto an equivalent polygonal free spaceF by making
nodes into convex rooms and edges into “kinked” hallways. Each hallway has a kink, or bend, in the middle,
such that the searcher cannot see from one end of the hall to the other.As a result, to clear a hall, the searcher
must walk its entire length, just as with an edge inG.

The kink removes all advantages of visibility, and thus has the same effect on theφ-searcher as it does
on the2π-searcher, regardless of the value ofφ. Since any planar graph can be mapped onto an equivalent
polygonal free space, and since computing the search number of a planar graph with maximum vertex degree
3 is NP-complete (Monien & Sudborough 1988), we can make the following generalization of Guibas et al.’s
(1999) complexity result:

Corollary 1. Given any field of viewφ and a polygonal free spaceF , computing the minimum number of
φ-searchers required to searchF is NP-hard.

4 A complete algorithm for a singleφ-searcher

Since, by Corollary 1, we cannot easily determine the minimum number ofφ-searchers required to search
a given environment, we focus initially on the case of controlling a singleφ-searcher. In this section, we
present a complete algorithm for the case of a singleφ-searcher. That is, we are interested in finding a
trajectory for a singleφ-searcher that will search a given polygonal free spaceF , under the assumption that
such a trajectory exists. We address the extension to multiple searchers later.

Guibas et al. (1999) gave a complete algorithm for the case of a single2π-searcher. Their algorithm does
not suffice for aφ-searcher withφ < 2π, nor can it be easily extended to handle this case, for two reasons.
First, the orientation of the searcher must be taken into account, which presents a different configuration
space. Second, and more importantly, the searcher’s FOV induces new and different visibility constraints
that are not captured by Guibas et al.’s (1999) decomposition. However, we borrow from their work in
several ways.

We follow an approach known in the robot motion planning literature asexact cell decomposition
(Schwartz & Sharir 1983, Leven & Sharir 1987, Avnaim et al. 1988, Latombe 1991): decompose the robot’s
(searcher’s) configuration spaceC = R

2 × S
1 into a set of non-overlappingnon-critical cellswith critical

boundaries. Intuitively, nothing “critical” can happen as the searcher moves within a cell, whereas “critical”
events can occur when the robot crosses a boundary. As a result thesearcher can be restricted to trajectories
on the cell boundaries. We formalize the meaning of “critical” for the limited-FOVpursuit-evasion problem
in the next section.

2Actually, the minimum required FOV is slightly smaller thanθ, but can be made arbitrarily close toθ by narrowing and
extending the middle horizontal corridor that leads to the pointB.

6



(a) (b) (c)

(d) (e) (f)

Figure 5:A computed clearing trajectory for aπ-searcher. In this case the searcher clears the environmentby moving
backward out of the upper room, down the hall, and into the left room (see also Extension 1).

The basic steps of our algorithm are: (i) by a series of partitions, retractthe given free space into a
network of curves that represent the visibility constraints induced by the environment and the searcher’s
FOV; (ii) construct aninformation graphthat encodes the possible information states of the problem as the
searcher moves, using the network of intersecting curves as a roadmap;then (iii) search this graph for a goal
state, and read the desired trajectory out from the resulting path. The keyto this algorithm, and a primary
contribution of this paper, is the identification of the critical configuration space boundaries; it is only by
crossing these boundaries that the searcher will change the information state of the problem.

4.1 Identifying critical changes in information state

The area visible to aφ-searcher when it is positioned at a pointp with orientationθ in F is called itsvisibility
polygon, Vφ(p, θ), abbreviated toV whenφ, p, andθ are clear from the context. When a pointq lies within
V , we say thatq is in view (Figure 6). The visibility polygon is defined by a set of line segments, some of
which lie on the boundary ofF and some of which do not. The latter segments, which cross through the
interior ofF , are calledgap edges(Figure 2(b)). These edges, combined with the edges ofF , form aplanar
mapthat partitions the free space ofF into a set ofregions.

We can attach to each region a binary label that indicates whether it is clear (“0”) or contaminated (“1”).
Some who have previously studied pursuit-evasion used the same labeling scheme (Lee et al. 2002), while
others labeled the gap edges, rather than the regions (Guibas et al. 1999). We model the information state of
the problem as(p, θ, B(p, θ)), where(p, θ) is the searcher’s pose andB(p, θ) is the list of binary labels on
the regions induced by its gap edges.

Consider Figure 5, which depicts a computed search trajectory for a singleπ-searcher in an office-

7



like environment. At each step, the environment is partitioned into finitely many regions by the searcher’s
visibility polygon. There is at most one region that is currently within the searcher’s view, which must be
clear, and some other regions that are out of view, each of which may be either clear or contaminated. In
the figure, the in-view region is colored light gray, and the out-of-view regions are colored either white (if
clear) or dark gray (if contaminated). For example, in Figure 5(c), thereare three clear regions (including
the one currently in view), and three contaminated regions. So the associated information state might be:
((5, 2), 2π

3 , {1, 0, 1, 1, 0, 0}), assuming that the searcher is positioned at(5, 2) with orientation2π
3 , and that

the regions are ordered appropriately.
Because they are induced by the searcher’s visibility polygon, regions can vary in size and shape as the

searcher moves. Regions retain their ordering and contamination labels through such deformations, so the
information state does not undergo a critical change. We need only take notice when the information state
changescombinatorially; that is, when a region is created or destroyed, or when a region’s label changes.
A combinatorial, or critical, change in information state corresponds to a move of the searcher that changes
the topology of contaminated space. During such a move, one or more gap edges will: disappear, split, or
merge (it can also happen that a new gap edge appears during a move, but new gap edges always border clear
space, and so such a move does not change the topology of the contaminated space). We can characterize
critical changes in information state with the following necessary condition:

Lemma 2. Given a singleφ-searcher in a polygonal free spaceF , there can be a change in the topology of
the contaminated space inF only if there is a change in the set of vertices ofF that lie inV .

Proof. We treat the three cases separately:

1. Edge disappearance. For a gap edgee to disappear, one of two events must occur. Either the
concave vertex ofF that inducede moves out ofV , or e becomes coincident with the boundary ofF

and terminates at a previously non-visible convex vertex ofF . In the first case,e disappears because it
falls out of view (and thus is no longer part ofV ); in the second case,e disappears because it becomes
part of the boundary ofF (and thus is no longer a gap edge).

2. Edge splitting. A gap edgee can be split only if a previously non-visible concave vertex ofF , sayv,
moves intoV such thatv lies one. The gap edgee will then split into two new edges, with the first
terminating atv and the second originating atv.

3. Edge merging.Merging is simply the reverse of splitting. Two gap edgese1 ande2 can merge only
if e1 terminates at the same concave vertex ofF , sayv, from whiche2 originates, andv moves out of
V . The result is a single new edge, having the same origin ase1.

In each case, at least one vertex ofF moves into or out ofV .

This lemma tells us that any critical change in information state will be accompanied by (actually, caused
by) a change in the set of vertices ofF that lie withinV . So we need to identify the points at which there
can be a change in the set of vertices that are in view.

Before continuing, we define two notions of visibility (Figure 6):

• mutually visible : Two pointsp andq aremutually visibleiff the line segment betweenp andq does
not cross the boundary ofF (this is the traditional geometric notion of visibility). Equivalently, we
may say thatp is visiblefrom q or thatq is visiblefrom p.

8



mutually visible

(and in view)
− visibleφ

(but not in view)
φ− visible

− visiblenon −φ

Figure 6:Examples of vertices that arein view, visible, and/orφ-visible, for φ = π
3 .

Figure 7:The partitionPπ for a simply-connected polygon. The dashed lines are the segments used in the construction
of the partition (the boundaries of the polygon are also included). Vertex visibility is constant within each resulting
cell.

• φ-visible : A pair of points(p, q) is φ-visible from a points iff there exists an orientation, sayθ,
for a φ-searcher located ats such that bothp andq lie within Vφ(s, θ), with p andq ordered coun-
terclockwise abouts. That is, if we rotate a sweep line counterclockwise abouts through the FOV
of a searcher positioned ats with orientationθ, we encounter bothp andq, with p coming beforeq
(angular ties are broken by distance froms).

Clearly, if (p, q) is φ1-visible froms, then(p, q) is alsoφ2-visible froms for anyφ2 ≥ φ1. Thus, if the pair
(p, q) is φ-visible froms, thenp andq are also both visible froms (traditional visibility is just2π-visibility).

4.2 Decomposing the configuration space

We now decompose the searcher’s configuration spaceC = R
2 × S

1 into cells such that the searcher can
move within any cell without changing the set of in-view vertices.3 We can then restrict our attention to
searcher trajectories that remain on the boundaries of these cells. This decomposition,Dφ, proceeds in three
steps, which are described in subsequent sections:

1. Cast certain lines throughF to create the partitionPπ; within any cellr ∈ Pπ, visibility of vertices is
invariant.

2. AugmentPπ with certain arcs to create the partitionPφ; within any cellr ∈ Pφ, φ-visibility of vertices
is invariant.

3Note that configuration spacecellsare 3-dimensional structures, distinct from the 2-dimensionalregionsthat are used to track
contamination. Cells are not assigned contamination labels.

9



3. For each intersectionp between lines or arcs inPφ, divide S
1 into orientation intervals to create the

partitionΨφ(p); for a φ-searcher positioned atp and oriented within any intervali ∈ Ψφ(p), the set
of vertices that are in-view is invariant.

4.2.1 The partition Pπ

For each pair of mutually visible verticesv1 andv2 of F (including whenv1 andv2 are endpoints of the
same segment ofF ), we construct the segmentv1v2, then extend this segment in either direction as far as
possible without crossing the boundary ofF . The intersections of the resulting segments form a partition
of F into a set of convex cells. The intuition behind this technique is that we identify all places where the
set of visible vertices can change due to occlusion (Figure 7). The resulting partition,Pπ, has the following
property:

Lemma 3. Given any cellr from the partitionPπ of a polygonal free spaceF , the set of visible vertices of
F is the same for all points in the interior ofr.

Proof. Assume by contradiction that some vertexv1 of F is visible from a pointp and not visible from
another pointq, with bothp andq in the interior ofr. Consider any continuous pathγ from p to q such that
γ is contained in the interior ofr. Then there is some point alongγ, says (possibly equal toq), wherev1

disappears from view. For this to occur, there must be another vertex ofF , sayv2, that occludesv1. The
three pointsv1, v2 ands will be collinear;v1 andv2 will be mutually visible; andv2 ands will be mutually
visible. Then in the construction ofPπ, the extension of the segmentv1v2 would pass throughs, which
means thats does not lie in the interior ofr. Thus there is no path betweenp andq that remains in the
interior of r, which contradicts the assumption that bothp andq lie in the interior ofr.

4.2.2 The partition Pφ

We know that the set of visible vertices cannot change within a cellr ∈ Pπ. However, forφ < 2π, it is still
possible for the set ofφ-visible vertex pairs to change within a cell. We want to refine the partitionPπ so
that there is no change inφ-visibility of vertices as aφ-searcher moves within a single cell. For this purpose,
we introducevisibility curves:

Definition (Visibility curve). Given two pointsv1 andv2 in the plane and a sensor fieldφ, consider the set
of pointsp such that the pair(v1, v2) is φ-visible fromp. This set includes its boundary, which consists of
circular arcs that connectv1 andv2 and is called the(φ-)visibility curveof v1 andv2, denotedCφ(v1, v2).

As can be seen in Figure 8(a), the visibility curve for0 < φ < π is composed of two arcs. Each arc
is part of a circle defined by the locus of points from which the segmentv1v2 subtends the angleφ (the
segmentv1v2 is always a chord in each circle; whenφ = π

2 the two circles are the same and the segment
v1v2 is a diameter). To maintain visibility of both vertices from a point along this curve,the searcher must
be oriented toward the midpoint ofv1v2. As φ approachesπ, these arcs flatten, until they meet to form a
single line whenφ = π. In this case, aπ-searcher positioned on the line must be oriented orthogonal to the
line in order to maintain visibility ofv1 andv2. As shown in Figure 8(b), forπ < φ < 2π, the visibility
curve is composed of the same two arcs as for2π − φ, but the orientation of the searcher is rotated byπ.
The curveCφ(v1, v2) is undefined forφ = 2π.

The importance of the visibility curve is that it makes concrete the constraints induced by the requirement
to maintain visibility of a given pair of vertices with aφ-searcher. For0 < φ ≤ π, the visibility curve is
the closest that aφ-searcher can approach two vertices while keeping them both in view (Figure 9). If the

10



C  (v1,v2)π
3

v1 v2

(a)

v2 5C    (v1,v2)π
3

v1

(b)

Figure 8:The visibility curveCφ(v1, v2) for two pointsv1 andv2. Shown in (a) is the case whenφ = π
3 ; these arcs

are the closest that aπ3 -searcher can come to the midpoint ofv1v2, while maintaining visibility of both points. Shown
in (b) is the case whenφ = 5π

3 ; these arcs are the farthest that a5π
3 -searcher can move after crossingv1v2 while

maintaining visibility of both points. Three example posesalong each curve are shown, with the relevant portions of
the visibility polygons shaded.

v1 v2

(v1,v2)Cπ
2

(v1,v2)Cπ
2

v1 v2

Figure 9:An example of howφ-visibility changes when crossing a visibility curve, forφ = π
2 . As the searcher crosses

Cπ

2
(v1, v2), it must lose sight of at least one of the two constraining vertices (in this case,v1).

searcher moves forward from a point on this curve, it will necessarily lose visibility of at least one vertex.
For π ≤ φ < 2π, the interpretation is slightly different: if two vertices are currently in view anda φ-
searcher passes between them, the visibility curve is the farthest that the searcher can travel while keeping
both vertices in view. When the searcher reaches a point on the visibility curve, its blind spot becomes
wedged between the two vertices; any further forward motion will cause atleast one vertex to fall out of
view.

We now refine our partition ofF with a set of visibility curves. For every pair of verticesv1 andv2 of
F (including whenv1 andv2 are endpoints of the same segment ofF ) for which there exists some point on
the curveCφ(v1, v2) that lies in the free space ofF and from which(v1, v2) and/or(v2, v1) is φ-visible, we
addCφ(v1, v2) to F . The intuition behind this step is that we need only include those curves that represent
visibility changes that can actually occur for a searcher moving throughF . For example, if the searcher can
never simultaneously see two vertices, then the visibility curve between them is not a meaningful constraint
on the searcher’s motion. For the same reason, we discard from each curve any portion that lies outsideF .
It is possible to further prune the visibility curves by removing fromCφ(v1, v2) anyportion from which one
or both ofv1 andv2 is not visible. This further pruning would speed up trajectory planning, but has no effect
on the completeness of our algorithm.

11



Figure 10:The partitionPφ for a square free spaceF , with φ = 2π
3 . The dashed lines are the segments and curves

used in the construction of the partition (the boundaries ofthe square are also included). Vertexφ-visibility is constant
within each resulting cell.

Note that whenφ = π, the addition of visibility curves is redundant: the existence of a third point
on Cπ(v1, v2) from which v1 andv2 areφ-visible is equivalent tov1 andv2 being mutually visible, and
Cπ(v1, v2) is just the line throughv1 andv2, which was included in the coarser partition (hence the name
Pπ).

The intersections of the resulting arrangement of curves and lines form apartition ofF into a set of cells
(Figure 10). This partition,Pφ, has the following two properties:

Lemma 4. Given any cellr from the partitionPφ of a polygonal free spaceF , the set ofφ-visible vertices
is the same for all points in the interior ofr.

Proof. SincePφ is a refinement ofPπ, r must be contained within a single cell, sayrπ, of Pπ. As the set
of visible vertices cannot change withinrπ (Lemma 3), the set of visible vertices likewise cannot change
within r.

We are left to show that, among the (constant) set of visible vertices, the setof φ-visible vertices does
not change. Assume by contradiction that this condition does not hold. In particular, assume that the vertex
pair (v1, v2) is φ-visible from some pointp and notφ-visible from some other pointq, with bothp andq in
the interior ofr. Thenp lies inside the set of points from which(v1, v2) is φ-visible, whileq lies outside this
set, and so they must lie on opposite sides of the set’s boundary. But that boundary,Cφ(v1, v2), is included
in the construction ofPφ, sop andq must lie in different cells, which contradicts the assumption that they
lie in the same cellr.

Lemma 5. Given any cellr from the partitionPφ of a polygonal free spaceF , any vertex pair that is
φ-visible from the interior ofr is alsoφ-visible from the boundary ofr.

Proof. Assume by contradiction that the vertex pair(v1, v2) is φ-visible from some pointp in the interior
of r (by Lemma 4, the particular choice ofp makes no difference), and notφ-visible from some pointq on
the boundary ofr. Then, by the same reasoning given in the previous proof,p andq must lie on opposite
sides ofCφ(v1, v2) (if q wereon that curve,(v1, v2) would still beφ-visible), which implies that they lie in
different cells, contradicting the initial assumption.

These lemmas tell us that aφ-searcher that is positioned within a cellr can move onto the boundary of
r without losing visibility of any vertices (it may gain visibility of some vertices). At this point, to avoid

12



possible ambiguity, it will be necessary to order to the set of vertices that are in view.4 For aφ-searcher
positioned atp with orientationθ, we denote bySφ(p, θ) the ordered set of vertices ofF that are in view
(i.e., in Vφ(p, θ)), sorted counterclockwise about the searcher (angular ties are broken by distance from
the searcher). For brevity we may abbreviate this set asSφ. We now show that a searcher positioned in
the interior of a cell can move to the cell’s boundary without removing or reordering any vertices that are
initially in view:

Lemma 6. Given any cellr from the partitionPφ of a polygonal free spaceF , and aφ-searcher with pose
(p, θ) such thatp lies in the interior ofr, the searcher can move to any pointq on the boundary ofr without
removing or reordering any vertices inSφ.

Proof. Consider any continuous pathγ from p to q such thatγ \ q is contained in the interior ofr andq is
visited exactly once (i.e., the pathγ intersects the boundary ofr only atq, where it terminates). Each vertex
pair that is inSφ(p, θ) must beφ-visible fromp and so, by Lemmas 4 & 5, also beφ-visible from all other
points onγ (sinceγ is confined tor). So it is possible for the searcher to move continuously alongγ without
losing sight of any vertices. Furthermore, becauseφ-visibility guarantees an ordering on each vertex pair, it
is possible for the searcher to move continuously alongγ such that no vertex pair inSφ is reordered. As a
result, the searcher can move fromp to q without removing or reordering any vertices inSφ.

This lemma tells us that we can move a searcher from the interior of a cell to its boundary, with the only
change inSφ being theadditionof vertices ofF . To put it another way, a searcher that is positioned in the
interior of a cell may as well move to the cell’s boundary, for at the worst its vertex coverage will remain
the same. As a result, without loss of generality we can restrict our attention tothe boundaries of the cells
of Pφ, and ignore their interiors.

Furthermore, no verticesSφ will be removed or reordered as the searcher moves along a single compo-
nent (i.e., segment or arc) of the boundary of a cell; such a change canonly occur at the intersection of two
components. By moving to an intersection, the searcher is in fact moving fromthe interior to the boundary
of a larger cell that would exist if the boundary component along which it istraveling were excluded from
the partition. So we can further focus our attention on the intersections of cell boundaries.

4.2.3 The partition Ψφ(p)

Of course, the searcher may have to rotate as it moves;φ-visibility only guarantees that it ispossiblefor the
searcher to simultaneously see a given pair of vertices. In general, fora pointp that is an intersection of
one or more cell boundaries, there will be an interval of orientation for which the set of vertices inV will
remain unchanged. Equivalently, for eachφ-visible vertex pair(q, s), there is an interval of orientation for
which q ands both lie inV . Intersecting any set of such intervals produces a smaller interval; the smallest
intervals which we can obtain this way, when taken together, form a partition of [0, 2pi). The intervals
produced by this partition,Ψφ(p), have the following property: the set of vertices inV is the same for any
two orientations in the same interval.

So all orientations in a given interval, sayi, of Ψφ(p) are equivalent, in the sense that there can be
no critical change in information as aφ-searcher, positioned atp, rotates withini. We can identify each
orientation interval by a pair of vertices(vfirst, vlast), which are, respectively, the first and last vertices in
view, according to the order in which each vertex is encountered by rotating a sweep line counterclockwise

4Whenφ ≥ π, it may be possible to change the information state by wedging the searcher’s blind spot between different vertex
pairs. In this case, only theorderof the in-view vertices will change, and so we must keep track of this order to be able to distinguish
among these information states.

13



through the searcher’s FOV. Without loss of generality, we can assume that aφ-searcher that is oriented
within an interval(vfirst, vlast) is always oriented such that either its minimum FOV boundary intersects
vfirst or its maximum FOV boundary intersectsvlast.

It can happen that fewer than two vertices are in view within an interval, in which casevfirst and/orvlast

can be∅. Then the order of the intervals is used to determine the appropriate orientation. Say, for example,
thatv1 andv2 are the only vertices visible fromp, and that(v1, v2) is φ-visible fromp; thenΨφ(p) might be
{(v1, v2), (v2, ∅), (∅, ∅), (∅, v1)}. In this case, the third interval,(∅, ∅), orients the searcher toward the wall
betweenv1 andv2, without either vertex being in view.

4.2.4 The decompositionDφ

Putting it all together, we use the partitions described above to form the decompositionDφ of the searcher’s
configuration spaceC = R

2 × S
1. The arcs and lines ofPφ decomposeC with respect to the searcher’s

position. For each pointp that is an intersection of two or more lines or arcs inPφ, the intervals ofΨφ(p)
further decomposeC with respect to the searcher’s orientation. This decomposition has polynomially many
cells:

Theorem 1. Given a polygonal free spaceF with n vertices, the number of cells in the decompositionDφ

is O(n5).

Proof. If all pairs of vertices inF are mutually visible (e.g.,F is a regular polygon), then the construction
of Pπ will cast one line from each vertex through each other vertex, resulting inn(n−1)

2 lines. Each line can
intersect each other line at most once, which givesO(n4) line/line intersections inPπ.5

Similarly,Pφ can add at most 2 arcs between each pair of vertices, orn(n−1) arcs in total. Each arc can
intersect each other arc at most twice, which givesO(n4) arc/arc intersections. Each arc can also intersect
each line at most twice, which givesO(n4) arc/line intersections. So we have a total ofO(n4) intersections
in Pφ.

If a searcher positioned at an intersectionp makes one full rotation, each vertexv that is visible fromp

can enter the searcher’s FOV at most once and exit its FOV at most once.Each entry / exit will induce one
orientation interval in the partitionΨφ(p). If all n vertices ofF are visible fromp, thenΨφ(p) can have
at most2n, or O(n), intervals. Since there areO(n4) intersections andO(n) intervals per intersection, we
haveO(n5) cells in all.

4.3 Building the information graph

We now have the roadmap along which the searcher will travel as it moves throughF , and we can build a
directedinformation graph, GI , that encodes all possible critical changes in the information state. We add
to GI a node for each possible region labeling that can result from placing the searcher at an intersectionp
and rotating it through each orientation interval inΨφ(p).

We add toGI edges that correspond to the feasible changes in information state. First we must define
the actions that are allowed for the searcher. Assume the searcher is positioned at an intersectionp, and
oriented within an interval defined by(vfirst, vlast). This searcher can:

1. Rotate into any adjacent orientation interval.

5A tighter bound ofO(n3) is possible here (Guibas et al. 1995), but the difference will be of no consequence in our analysis.

14



Figure 11:For a φ-searcher with the pose shown here, each “tooth” induces onegap edge, and thus one region in
the contamination map. If this polygon hasn vertices, then it hasn−4

2 teeth, which inducen−4
2 regions (depending on

the value ofφ, there will be either one or two additional regions). Since each region can take one of two labels, there
are2( n−4

2
) possible labelings, which establishes the tightness of thebound given in Theorem 2.

2. Translate along the length of any boundary componentc incident top such that the orientation interval
(vfirst, vlast) is valid at the opposite end ofc. During the move the searcher servos its rotation so as to
maintain visibility of bothvfirst andvlast (and thus all vertices in between).

For each noden in GI , for each allowable actiona, we determine the information state that would result
from executinga in configurationn, and add an edge fromn to the node that encodes the new state. Given an
initial information state and a chosen action, the new information state can be computed as follows: the gap
edges are determined by rotational sweep line and the induced planar map is constructed using a traditional
sweep line. In the new map, a regionr is clear (labeled “0”) if either:r is currently in view (because the
regions are defined by the searcher’s visibility polygon,r will be either entirely in view or entirely out of
view), orr does not intersect any contaminated region in the old map, from the previousinformation state.
Otherwise,r is contaminated (labeled “1”).

Theorem 2. Given a polygonal free spaceF with n vertices, the graphGI hasO(2n) nodes, and this bound
is the best possible.

Proof. For aφ-searcher positioned at an intersection, sayp, of Pφ and oriented within an interval, sayi, of
Ψφ(p), each in-view vertex can induce at most one gap edge and thus at most one region in the contamination
map. Each region in the map can take one of two labels, and each labeling addsa node toGI . If all n vertices
are in view, then there can be at mostn regions and thusO(2n) labelings for each of theO(n5) cells inDφ,

or O(2n) nodes inGI . Figure 11 shows a polygon andφ-searcher pose that induce (at least)2(n−4

2
) region

labelings, for anyn and anyφ, establishing the tightness of the bound.

If we can bound byk the maximum number of vertices that are visible from any point inF , then there
will be O(2k) labelings for each of theO(n5) cells, andGI will be polynomially, rather than exponentially,
large inn:

Corollary 2. If at mostk of F ’s n vertices are visible from any point inF , then the graphGI hasO(n52k)
nodes.

Given an information state from which to start, we can then searchGI for a goal state, which represents
all of F being clear. In a start state, all in-view regions are clear and all others are contaminated. In a goal
state, all regions are clear. Given a feasible path throughGI from start to goal, we can read from it the
required searcher trajectory, as a series of in-place rotations and constrained translations. We now establish
the completeness of this approach:

15



Theorem 3. An algorithm that will find any path to a goal vertex from a start vertex inGI is complete for
the visibility-based pursuit-evasion problem with a singleφ-searcher.

Proof. Given a polygonal free spaceF and a singleφ-searcher, take any solution trajectory, sayτ . Our
goal is to mapτ onto an equivalent path inGI . That is, we wish to show thatτ can be transformed into an
equivalent trajectory along the curves that make up the roadmap used in constructingGI .

Denote by(p, θ) the searcher’s pose at the start ofτ . If p lies in the interior of a cellr in Pφ then, by
Lemma 6, we can move the searcher to any point on the boundary ofr, without losing or reordering any
in-view vertices ofF . In particular, we can move the searcher to any intersection along the boundary of
r. If p already lies on a cell boundary, then we can slide the searcher along thatboundary to the nearest
intersection, again without losing or reordering any in-view vertices.

As τ progresses, we can replicate its moves within our roadmap in the following way. While τ remains
in the interior of a cellr, we keep the searcher at an intersection, sayq, on the boundary ofr, and achieve
any necessary changes in vertex visibility by simply rotating the searcher through its orientation intervals.
If τ crosses into an adjacent cellr′ such thatq is also on the boundary ofr′, we can continue to rotate
the searcher in place. If, on the other hand,q is not on the boundary ofr′, we move the searcher along
any boundary component that is incident to bothq and some other intersection, says, that does lie on the
boundary ofr′. During this translation, the searcher’s rotation is controlled so as to remain within its current
orientation interval and not lose or reorder any in-view vertices (Lemma 6 guarantees that this is possible).

In this way, we create a new trajectoryτ ′ that moves along the roadmap and is at as least as good asτ .
That is,Sφ at each point onτ ′ is a superset ofSφ at the corresponding point onτ . Compared toτ , a searcher
moving alongτ ′ may see additional vertices, but it will never miss any, nor will it see them in a different
order. As we can construct a solutionτ ′ given any solutionτ , the algorithm is complete.

5 Implementation and computed examples

We have implemented and tested the algorithm described above, using the CGAL computational geometry
library (Burnikel et al. 1999). For reasons of efficiency and convenience, our implementation computes
trajectories only for the case ofφ = π. In this case, the roadmap inPφ consists only of linear objects,
and so the underlying geometric computation can be done with rational numbers.For φ 6= π, circular arcs
are introduced, and the exact computation of their intersections requires the use of arbitrary precision real
numbers, which are far slower to work with than rationals. Efficiency concerns aside, the case ofφ = π

is of particular interest and value to roboticists, because a sensor that is commonly found on robots today
is a scanning laser range-finder with a180◦ FOV (e.g., the SICK LMS). So trajectories computed by our
implementation can be executed directly on holonomic robots that are equipped with such sensors.

Contrary to the description given above, we do not actually construct allof GI prior to the search, but
rather construct it on the fly, adding nodes and edges as necessary.This technique provides a significant
speedup, for the full graph contains many irrelevant information states, as well as some unreachable ones.

We now present some computed examples.6 In all the figures, light gray areas are currently in view
(and thus clear), white areas are clear (but not in view), and dark gray areas are contaminated. For reasons
of space, not all steps in each trajectory are shown. For clarity of presentation, the searcher’s approximate
trajectory is shown in the last frame. Shown in Figures 5 & 12 are office-likeenvironments composed of

6Animations of these and other computed examples can be found at:http://ai.stanford.edu/∼gerkey/research/pe, and in
Appendix A.

16



Figure 12:A computed clearing trajectory for aπ-searcher in an office-like environment (see also Extension2).

hallways connecting rooms. Shown in Figure 15 is a more complex environment, for which the computed
trajectory had 42 steps.

6 Extensions and further examples

Since we may want to search environments that cannot be searched by a singleφ-searcher, it is important to
consider how we can extend this algorithm to handle multiple searchers. One way is to include in the con-
struction ofGI the joint configuration space of all searchers. Unfortunately, this approach is not complete.
The reason is that the visibility polygons of multiple searchers can interact and overlap in such a way that
the information state can change without any searcher crossing a cell boundary inPφ. It is easy to construct
environments in which two searchers will clear a portion of the environment without realizing it (see Guibas
et al. (1999) for an example). On the other hand, we have not yet encountered an environment for which this

17



Figure 13:This example, with one loop, is the simplest environment that requires twoπ-searchers to clear. In this
case, the searcher in the upper left corner remains stationary, watching the upper and left corridors, while the other
searcher moves to clear the right and lower corridors (see also Extension 3).

Figure 14:A computed clearing trajectory for twoπ-searchers in a sensor-based map of a corridor with two adjoining
rooms. The trajectory was computed from a manually-generated floorplan-style approximation of this sensor-based
map. In this case, one searcher moves to the left end of the hall, and turns around to cover the hall while the other
searcher sequentially clears the two rooms. This trajectory was executed by two Pioneer mobile robots (see also
Extension 4).

incompleteness actually causes the algorithm to fail to find a solution when one exists, and we believe that
such cases are rare.

A more serious drawback to extending our algorithm to multiple searchers in thisway is that the joint
configuration space grows exponentially in the number of searchers. Even in simple environments and with
only two searchers, the information graphGI requires a prohibitively large amount of memory to store and a
correspondingly long time to search. Nevertheless, we have implemented this extension; shown in Figure 13
is a simple loop environment that requires two searchers to clear (a singleφ-searcher is incapable of clearing
any loops, even whenφ = 2π). We used the multi-searcher extension to compute this solution, in which
two searchers work together to clear the environment. It is possible to restore completeness by constructing
a new information graph that accurately reflects the possible changes in information induced by multiple
searchers, but this change would further exponentially increase the problem difficulty.

There are other avenues for extension that concern the capabilities of robots. For example, there is no
physical sensor that can provide target detection over an unlimited range. If the searcher’s sensor range is

18



short enough to make a difference in a given environment (e.g., a laser range-finder in a building with very
long corridors), then we must account for the range, or risk generating non-solution trajectories. We can
incorporate into the algorithm a limited range sensor (or indeed, any sensormodel) by modifying the step in
which the contamination map is updated during the construction of the information graph. The limited-range
φ-searcher will have a different visibility polygon, which will induce different map. Again, this extension
comes at the expense of completeness, for there are now distance-specific visibility constraints that are not
captured in our cell decomposition.

Another extension is to allow for non-holonomic constraints on the searcher. Consider for example, a
two-wheel differentially-driven robot, which can translate forward and backward and rotate in place, but
cannot translate sideways. One way to account for this constraint is to modify the construction of the
information graph to allow only moves that can be executed by a differentially-driven robot. Then any
computed trajectory will be a feasible solution. We could go further with this ideaby restricting the robot to
move only within the FOV of its evader sensor. If the the robot uses the same sensor for obstacle avoidance
as for evader detection (this is often the case), such a restriction would make for more robust solutions
by never requiring the robot to drive blindly, which would force it to rely on the accuracy of the map for
collision avoidance.

Figure 14 demonstrates the application of this modified algorithm to a team of two laser-equipped Pio-
neer mobile robots (Figure 1(a)) searching a hallway with two adjoining rooms. In this case, we manually
generated a floorplan-style approximation of the learned sensor-basedmap shown in the figure (the robots
used the original map for localization during the trajectory execution). We then planned for two searchers
in the resulting, simplified map, using the pruned configuration space described above. The resulting coop-
erative strategy was executed on the robots: one robot covered the hallway while the other searched the two
rooms in succession.

Not surprisingly, these extensions also sacrifice completeness. A completealgorithm for a non-holonomic
searcher would have to answer the following non-trivial motion planning question: given a robot with non-
holonomic constraints and a fixed sensor orientation, does there exist a feasible trajectory from poseA to
poseB such that a setS of points remain in view en route?

7 Summary

We have presented a novel form of the visibility-based pursuit-evasion problem by introducing a new class
of searcher, theφ-searcher, which we chose because it can readily be instantiated as a physical mobile
robot. Because theφ-searcher is qualitatively different from the previously studiedk-searcher, existing
algorithms do not suffice. As part of a detailed analysis of this new kind of searcher, we showed that
computing the minimum number ofφ-searchers required to search a given environment is NP-hard and
derived the first complete search algorithm for a singleφ-searcher. We showed how this algorithm can be
extended to find strategies for multiple searchers by planning in their joint configuration space, and gave
examples of computed trajectories for single searchers and for teams of twosearchers. While the algorithm
applies toφ-searchers with arbitrary fields of view, for reasons of simplicity and efficiency we restricted our
implementation to the special case ofφ = π.

Planning in the joint configuration space of all searchers is clearly not thebest approach, as it is central-
ized and scales badly as the number of searchers increases. We are currently designing more parsimonious
techniques for coordinating multiple searchers, such as distributed negotiation (Gerkey et al. 2005). For
example, if a searcher encounters a hallway with many contaminated rooms, itmay ask of another searcher,
“Watch my back from the end of the hall while I clear these rooms.” It is interesting to note that this kind

19



of cooperative mini-strategy arises naturally in the joint configuration space plans. We are investigating the
possibility of learning from these plans such higher-level primitives as “watch my back” and “guard this
intersection.”

References

Adler, M., Räcke, H., Sivadasan, N., Sohler, C. & Vöcking, B. (2003), ‘Randomized Pursuit-Evasion in Graphs’,
Combinatorics, Probability and Computing12(3), 225–244.

Avnaim, F., Boissonat, J. D. & Faverjon, B. (1988), A practical exact planning algorithm for polygonal objects amidst
polygonal obstacles,in ‘Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)’, pp. 1656–1660.

Burgard, W., Fox, D., Moors, M., Simmons, R. & Thrun, S. (2000), Collaborative multi-robot exploration,in ‘Proc.
of the IEEE Intl. Conf. on Robotics and Automation (ICRA)’, San Francisco, California, pp. 476–481.

Burnikel, C., Fleischer, R., Mehlhorn, K. & Schirra, S. (1999), Efficient exact geometric computation made easy,in
‘Proc. of the ACM Symp. on Computational Geometry’, Miami Beach, Florida, pp. 341–350.

Gerkey, B. P., Thrun, S. & Gordon, G. (2005), Parallel stochastic hill-climbing with small teams,in L.E.Parker et al.,
eds, ‘Multi-Robot Systems: From Swarms to Intelligent Automata, Volume III’, Springer, the Netherlands, pp. 65–
77.

Guibas, L. J., Latombe, J.-C., LaValle, S. M., Lin, D. & Motwani, R. (1999), ‘A Visibility-Based Pursuit-Evasion
Problem’,Intl. J. of Computational Geometry & Applications9(4 & 5), 471–493.

Guibas, L. J., Motwani, R. & Raghavan, P. (1995), The robot localization problem,in K. Goldberg, J.-C. Latombe,
R. Wilson & D. Halperin, eds, ‘Algorithmic Foundations of Robotics’, A.K. Peters, Natick, Massachusetts, pp. 269–
282.

Hájek, O. (1975),Pursuit Games, Academic Press, New York.

Isaacs, R. (1965),Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and
Optimization, John Wiley & Sons, New York.

Isler, V., Kannan, S. & Khanna, S. (2005), ‘Randomized pursuit-evasion in a polygonal environment’,IEEE Transac-
tions on Robotics21(5), 875–884.

Jung, B. & Sukhatme, G. S. (2002), ‘Tracking Targets using Multiple Robots: The Effect of Environment Occlusion’,
Autonomous Robots13(3), 191–205.

Kalra, N., Ferguson, D. & Stentz, A. (2005), Hoplites: A market-based framework for planned tight coordination
in multirobot teams,in ‘Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)’, Barcelona, Spain,
pp. 1170–1177.

Koenig, S. & Simmons, R. G. (1993), Exploration with and without a map,in ‘Proceedings of the AAAI Workshop on
Learning Action Models at the Eleventh National Conferenceon Artificial Intelligence (AAAI)’, pp. 28–32. (also
available as AAAI Technical Report WS-93-06).

Latombe, J.-C. (1991),Robot Motion Planning, Kluwer Academic Publishers, Norwell, Massachusetts.

LaValle, S. M., Lin, D., Guibas, L. J., Latombe, J.-C. & Motwani, R. (1997), Finding an Unpredictable Target in a
Workspace with Obstacles,in ‘Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA)’, Albuquerque,
New Mexico, pp. 737–742.

20



Lee, J.-H., Park, S.-M. & Chwa, K.-Y. (2002), ‘Simple algorithms for searching a polygon with flashlights’,Informa-
tion Processing Letters81, 265–270.

Leven, D. & Sharir, M. (1987), ‘An efficient and simple motionplanning algorithm for a ladder moving in a 2-
dimensional space amidst polygonal barriers’,J. of Algorithms8, 192–215.

Megiddo, N., Hakimi, S., Garey, M., Johnson, D. & Papadimitriou, C. (1988), ‘The Complexity of Searching a Graph’,
J. of the ACM35(1), 18–44.

Monien, B. & Sudborough, I. (1988), ‘Min cut is NP-complete for edge weighted trees’,Theoretical Computer Science
58, 209–229.

O’Rourke, J. (1987),Art Gallery Theorems and Algorithms, Oxford University Press, New York.

Park, S.-M., Lee, J.-H. & Chwa, K.-Y. (2001), Visibility-Based Pursuit-Evasion in a Polygonal Region by a Searcher,
in F. Orejas and P.G. Spirakis and J. van Leeuwen, ed., ‘Automata, languages and programming’, Lecture Notes in
Computer Science 2076, Springer-Verlag, Berlin, pp. 456–468.

Parker, L. E. (1999), ‘Cooperative Robotics for Multi-Target Observation’,Intelligent Automation and Soft Computing
5(1), 5–19.

Parsons, T. (1976), Pursuit-evasion in a graph,in Y. Alavi & D. Lick, eds, ‘Theory and Applications of Graphs’,
Lecture Notes in Mathematics 642, Springer-Verlag, Berlin, pp. 426–441.

Roy, N. & Gordon, G. (2002), Exponential Family PCA for Belief Compression in POMDPs,in ‘Proc. of Advances
in Neural Information Processing Systems (NIPS)’, Vancouver, Canada.

Schwartz, J. & Sharir, M. (1983), ‘On the ‘piano movers’ problem: I. the case of a rigid polygonal body moving amidst
polygonal barriers’,Communications on Pure and Applied Mathematics36, 345–398.

Shermer, T. C. (1992), ‘Recent results in art galleries’,Proceedings of the IEEE80(9), 1384–1399.

Spletzer, J. R. & Taylor, C. J. (2003), ‘Dynamic sensor planning and control for optimally tracking targets’,The Intl.
J. of Robotics Research22(1), 7–20.

Stroupe, A. (2003), Collaborative Execution of Exploration and Tracking Using Move Value Estimation for Robot
Teams (MVERT), PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania.

Suzuki, I. & Yamashita, M. (1992), ‘Searching for a mobile intruder in a polygonal region’,SIAM J. on Computing
21(5), 863–888.

Vidal, R., Shakernia, O., Kim, H. J., Shim, D. H. & Sastry, S. (2002), ‘Probabalistic Pursuit-Evasion Games: Theory,
Implementation, and Experimental Evaluation’,IEEE Transactions on Robotics and Automation18(5), 662–669.

Werger, B. B. & Mataríc, M. J. (2001), Broadcast of Local Eligibility for Multi-Target Observation,in L. E. Parker,
G. Bekey & J. Barhen, eds, ‘Distributed Autonomous Robotic Systems 4’, Springer-Verlag, New York, pp. 347–356.

Yamauchi, B. (1998), Frontier-Based Exploration Using Multiple Robots,in ‘Proc. of Autonomous Agents’, Min-
neapolis, Minnesota, pp. 47–53.

21



A Index to Multimedia Extensions

The multimedia extensions to this article can be found online by following the hyperlinks from www.ijrr.org:

Extension Media type Description
1 Video Example 1: Oneπ-searcher clears two rooms connected by a hallway.
2 Video Example 2: Oneπ-searcher clears a U-shaped office-like environment.
3 Video Example 3: Twoπ-searchers clear a loop.
4 Video Example 4: Two laser-equipped Pioneer robots clear two rooms connected

by a hallway.
5 Video Example 5: Oneπ-searcher clears an environment with four alcoves.
6 Video Example 6: Oneπ-searcher clears three rooms connected by a hallway.

22



Figure 15:In this more complicated example, theπ-searcher first clears the left hand side from top to bottom, then
moves through the horizontal hallway to clear the right handside, from top to bottom (see also Extension 5).

23


