How Does an Answer Set Solver Work?
Notes

• Assume that \( P \) is a ground and normal program.

• Answer sets of disjunctive programs are computed in a similar way.

• The algorithm presented in these slides is similar to the algorithm implemented by the first answer set solver (smo-}
  

Useful Observations about Answer Sets

• For a program $P$ and an answer set $S$
  – if an atom $a$ does not appear in the head of any rule in $P$ then $a \notin S$.
  – if an atom $a \in S$ then there exists a rule $r$ in $P$ such that $a = head(r)$, $pos(r) \subseteq S$, and $neg(r) \cap S = \emptyset$.

• An answer set $S$ can be viewed as a pair $<S,N>$ where $N = B_p \setminus S$ ($B_p$ is the Herbrand base of $P$; $S$ contains the true atoms and $N$ contains the false atoms)
Useful Observations about Answer Sets

• If we know that some atom, say a, must be in an answer set then we could eliminate all the rules, whose negative part contains a, from consideration.

• If we know that some atom, say a, cannot be true in an answer set then we could eliminate all the rules, whose positive part contains a, from further consideration.

$$\begin{align*}
P_1 & \quad a \leftarrow \\
        & \quad b \leftarrow \neg a \\
        & \quad c \leftarrow b
\end{align*}$$

- a must be in every answer set (1)
- In virtue of (1) this rule should never be considered or b should be false (2)
- In virtue of (2) this rule can never be applied and hence c cannot be true (3)

(1), (2), (3) imply that the answer set is \{a\}
Useful Observations about Answer Sets

• A partial answer set is a pair $<CS, CN>$ where $CS$ and $CN$ are two disjoint sets of atoms in $B_p$ which contain atoms that must be true or false, respectively, with respect to an answer set

• Given $P$ and a partial answer set $<CS, CN>$ the aforementioned observations can be used to determine a partial answer set $<CS', CN'>$ such that $CS \subseteq CS'$ and $CN \subseteq CN'$ if $CS$ is a subset of an answer set
  – E.g.: for $P_1$ and $<\emptyset, \emptyset>$ leads to $<\{a\},\{b\}>$
Useful Observations about Answer Sets

• Given \( P \) and a partial answer set \(<CS, CN>\), there are situations where no atom must be true or false. In this case, the value of an atom must be guessed and depending on the guessed value, the partial answer set can become different. E.g.,

\[
P_2 = \{a \leftarrow \text{not } b, \ b \leftarrow \text{not } a\} \text{ and } <\emptyset, \emptyset>
\]
a could be true or false and \( b \) could be true or false. Guessing a true leads to \(<\{a\}, \emptyset>\) which ultimately leads to \(<\{a\}, \{b\}>\)

Guessing a false leads to \(<\emptyset, \{a\}>\) which ultimately leads to \(<\{b\}, \{a\}>\)
Detailed Algorithm: Expand(P, CS, CN)

• **Input**: a program P and a partial answer set <CS,CN>
• **Output**: a partial answer set <CS’, CN’> such that CS \(\subseteq\) CS’ and CN \(\subseteq\) CN’ or **false** if CS cannot be extended to an answer set

**repeat**

– set change to **false**
– find all rule r such that pos(r) \(\subseteq\) CS and neg(r) \(\subseteq\) CN, add head(r) to CS, and set change to **true**
– find all rule r such that pos(r) \(\cap\) CN \(\neq\) \(\emptyset\) or neg(r) \(\cap\) CS \(\neq\) \(\emptyset\), add head(r) to CN, and set change to **true**

**until** there is no change in <CS,CN> (change is **false**)

**return** <CS,CN> if CS \(\cap\) CN=\(\emptyset\) or **false** otherwise
Detailed Algorithm: Solves(P, CS, CN)

- **Input**: a program P, a partial answer set <CS, CN>
- **Output**: answer sets of P which are superset of CS or false otherwise

```plaintext
if Expand(P, CS, CN) = false then return false
<CS,CN> = Expand(P, CS, CN)
select an atom a that does not belong to CS ∪ CN
return Solves(P, CS ∪ {a}, CN) ∪ Solves(P, CS, CN ∪ {a})
```
Solver Algorithm

- **Input**: a program P
- **Output**: answer sets of P or false if no answer set exists

```plaintext
if Expand(P, ∅, ∅) = false then return false
set <CS,CN> = Expand(P, ∅, ∅)
return Solves(P, CS, CN)
```
Which atom to guess is the key to solver’s performance

Expand(P, ∅, ∅) returns <{a}, {b}>
Solves(P, {a}, {b}) calls Solves(P, {a,d}, {b})
and Solves(P, {a}, {b,d}) [Guessing d]
Solves(P, {a,d}, {b}) returns \{a,d,c\} as an answer set
Solves(P, {a}, {b,d}) returns \{a,e\} as an answer set
Example

\[ P = \{ \begin{align*} a & \leftarrow \text{true} \\ b & \leftarrow \text{not } a \\ c & \leftarrow a, \ d \\ e & \leftarrow \text{not } d \\ d & \leftarrow \text{not } e \end{align*} \} \]

Expand(\( P, \emptyset, \emptyset \)) = \{a, b\}

Solves(\( P, \{a\}, \{b\} \))

guess \( d \)

Expand(\( P, \{a, d\}, \{b\} \))

Solves(\( P, \{a, d\}, \{b\} \))

Solves(\( P, \{a\}, \{b, d\} \))

Expand(\( P, \{a, d\}, \{b\} \)) = \{a, d, c, \{b, e\}\}

Expand(\( P, \{a\}, \{b, d\} \)) = \{a, e, \{b, d, c\}\}

\{a, d, c\} = B_P

\{a, e\}