15.

Representing Actions
Outline

• Representing Change
• Situation Calculus
 – Fluents and pre-conditions
 – Frame problem and solutions
 – Projection and explanation closure
• Relationship to other formalisms
 – Logic programming (Golog)
 – Description Logics
• An application to represent biological processes
• Other ways to represent change
• Summary
Representing Change

• Sentences of first order logic are either true or false in an interpretation and stay that way, eg:
 – boy(john), student(john), etc.

• Two kinds of change
 – Change in our beliefs about the world
 • From "earth is flat" to "earth is round"
 – Belief revision
 – Beliefs are about a changing world
 • Initially ¬student(john), but later on, student(john)
 – Different from default reasoning in which might have initially believed ¬student(john) and now we believe student(john)
 – Here, we believe in both ¬student(john) and student(john) but at different points in time
Situation calculus

The situation calculus is a dialect of FOL for representing dynamically changing worlds in which all changes are the result of named actions.

There are two distinguished sorts of terms:

- **actions**, such as
 - put\((x,y)\) put object \(x\) on top of object \(y\)
 - walk\((loc)\) walk to location \(loc\)
 - pickup\((r,x)\) robot \(r\) picks up object \(x\)

- **situations**, denoting possible world histories. A distinguished constant \(S_0\) and function symbol \(do\) are used
 - \(S_0\) the initial situation, before any actions have been performed
 - \(do(a,s)\) the situation that results from doing action \(a\) in situation \(s\)

 for example: \(do(put(A,B),do(put(B,C),S_0))\) the situation that results from putting A on B after putting B on C in the initial situation
Fluents

Predicates or functions whose values may vary from situation to situation are called fluents.

These are written using predicate or function symbols whose last argument is a situation

for example: \(\text{Holding}(r, x, s) \): robot \(r \) is holding object \(x \) in situation \(s \)

can have: \(\neg \text{Holding}(r, x, s) \land \text{Holding}(r, x, \text{do}(\text{pickup}(r, x), s)) \)

the robot is not holding the object \(x \) in situation \(s \), but is holding it in the situation that results from picking it up

Note: there is no distinguished “current” situation. A sentence can talk about many different situations, past, present, or future.

A distinguished predicate symbol \(\text{Poss}(a, s) \) is used to state that \(a \) may be performed in situation \(s \)

for example: \(\text{Poss}(\text{pickup}(r, x), S_0) \) it is possible for the robot \(r \) to pickup object \(x \) in the initial situation

This is the entire language.
Preconditions and effects

It is necessary to include in a KB not only facts about the initial situation, but also about world dynamics: what the actions do.

Actions typically have **preconditions**: what needs to be true for the action to be performed

- \(\text{Poss}(\text{pickup}(r,x), s) \equiv \forall z. \neg \text{Holding}(r,z,s) \land \neg \text{Heavy}(x) \land \text{NextTo}(r,x,s) \)

 a robot can pickup an object iff it is not holding anything, the object is not too heavy, and the robot is next to the object

 Note: free variables assumed to be universally quantified

- \(\text{Poss}(\text{repair}(r,x), s) = \text{HasGlue}(r,s) \land \text{Broken}(x,s) \)

 it is possible to repair an object iff the object is broken and the robot has glue

Actions typically have **effects**: the fluents that change as the result of performing the action

- \(\text{Fragile}(x) \models \text{Broken}(x, \text{do(drop}(r,x), s)) \)

 dropping a fragile object causes it to break

- \(\neg \text{Broken}(x, \text{do(repairo(r,x), s)}) \)

 repairing an object causes it to be unbroken
The frame problem

To really know how the world works, it is also necessary to know what fluents are unaffected by performing an action.

- $\text{Colour}(x, c, s) \Rightarrow \text{Colour}(x, c, do(\text{drop}(r, x), s))$

 dropping an object does not change its colour

- $\neg\text{Broken}(x, s) \land [x \neq y \lor \neg\text{Fragile}(x)] \Rightarrow \neg\text{Broken}(x, do(\text{drop}(r, y), s))$

 not breaking things

These are sometimes called frame axioms.

Problem: need to know a vast number of such axioms. (Few actions affect the value of a given fluent; most leave it invariant.)

- an object’s colour is unaffected by picking things up, opening a door, using the phone, turning on a light, electing a new Prime Minister of Canada, etc.

The frame problem:

- in building KB, need to think of these $\sim 2 \times A \times F$ facts about what does not change
- the system needs to reason efficiently with them
What counts as a solution?

• Suppose the person responsible for building a KB has written down all the effect axioms

 for each fluent F and action A that can cause the truth value of F to change, an axiom of the form $[R(s) \supset \pm F(do(A,s))]$, where $R(s)$ is some condition on s

• We want a systematic procedure for generating all the frame axioms from these effect axioms

• If possible, we also want a parsimonious representation for them (since in their simplest form, there are too many)

Why do we want such a solution?

• frame axioms are necessary to reason about actions and are not entailed by the other axioms

• convenience for the KB builder

 -- modularity: only add effect axioms

 -- accuracy: no inadvertent omissions

• for theorizing about actions
Solution to Frame Problem

- Precondition axioms (one per action)
 - Normal form for axioms
- Successor state axioms (one per fluent)
- Unique name axioms for actions
Normal form for effect axioms

Suppose there are two positive effect axioms for the fluent \textit{Broken}:
\[
\text{Fragile}(x) \Rightarrow \text{Broken}(x, do(\text{drop}(r,x), s)) \\
\text{NextTo}(b, x, s) \Rightarrow \text{Broken}(x, do(\text{explode}(b), s))
\]

These can be rewritten as
\[
\exists r \{a = \text{drop}(r,x) \land \text{Fragile}(x)\} \lor \exists b \{a = \text{explode}(b) \land \text{NextTo}(b, x, s)\} \\
\Rightarrow \text{Broken}(x, do(a, s))
\]

Similarly, consider the negative effect axiom:
\[
\neg \text{Broken}(x, do(\text{repair}(r,x), s))
\]

which can be rewritten as
\[
\exists r \{a = \text{repair}(r,x)\} \Rightarrow \neg \text{Broken}(x, do(a, s))
\]

In general, for any fluent \(F \), we can rewrite all the effect axioms as two formulas of the form
\[
\begin{align*}
P_F(x, a, s) \Rightarrow F(x, do(a, s)) & \quad (1) \\
N_F(x, a, s) \Rightarrow \neg F(x, do(a, s)) & \quad (2)
\end{align*}
\]

where \(P_F(x, a, s) \) and \(N_F(x, a, s) \) are formulas whose free variables are among the \(x_i, a, \) and \(s \).
Now make a completeness assumption regarding these effect axioms:

assume that (1) and (2) characterize all the conditions under which an action \(a \) changes the value of fluent \(F \).

This can be formalized by explanation closure axioms:

\[
\neg F(x, s) \land F(x, do(a,s)) \models P_F(x, a,s) \tag{3}
\]

if \(F \) was false and was made true by doing action \(a \)
then condition \(P_F \) must have been true

\[
F(x, s) \land \neg F(x, do(a,s)) \models N_F(x, a,s) \tag{4}
\]

if \(F \) was true and was made false by doing action \(a \)
then condition \(N_F \) must have been true

These explanation closure axioms are in fact disguised versions of frame axioms!

\[
\neg F(x, s) \land \neg P_F(x, a,s) \models \neg F(x, do(a,s))
\]

\[
F(x, s) \land \neg N_F(x, a,s) \models F(x, do(a,s))
\]
Successor state axioms

Further assume that our KB entails the following

- integrity of the effect axioms: \(\neg \exists x, a, s. P_F(x, a, s) \land N_F(x, a, s) \)

- unique names for actions:
 \[
 \begin{align*}
 A(x_1, \ldots, x_n) = A(y_1, \ldots, y_m) & \supset (x_1 = y_1) \land \ldots \land (x_n = y_m) \\
 A(x_1, \ldots, x_n) \neq B(y_1, \ldots, y_m) & \text{ where } A \text{ and } B \text{ are distinct}
 \end{align*}
 \]

Then it can be shown that KB entails that (1), (2), (3), and (4) together are logically equivalent to

\[
F(x, do(a,s)) \equiv P_F(x, a, s) \lor (F(x, s) \land \neg N_F(x, a,s))
\]

This is called the **successor state axiom** for \(F \).

For example, the successor state axiom for the *Broken* fluent is:

\[
\begin{align*}
\text{Broken}(x, do(a,s)) & \equiv \\
\exists r \{ a = \text{drop}(r,x) \land \text{Fragile}(x) \} \\
\lor \exists b \{ a = \text{explode}(b) \land \text{NextTo}(b,x,s) \} \\
\lor \text{Broken}(x, s) \land \neg \exists r \{ a = \text{repair}(r,x) \}
\end{align*}
\]

An object \(x \) is broken after doing action \(a \) iff \(a \) is a dropping action and \(x \) is fragile, or \(a \) is a bomb exploding where \(x \) is next to the bomb, or \(x \) was already broken and \(a \) is not the action of repairing it.
Summary of Solution to Frame Problem

This simple solution to the frame problem (due to Ray Reiter) yields the following axioms:

- one successor state axiom per fluent
- one precondition axiom per action
- unique name axioms for actions

Moreover, we do not get fewer axioms at the expense of prohibitively long ones

the length of a successor state axioms is roughly proportional to the number of actions which affect the truth value of the fluent

The conciseness and perspicuity of the solution relies on

- quantification over actions
- the assumption that relatively few actions affect each fluent
- the completeness assumption (for effects)

Moreover, the solution depends on the fact that actions always have deterministic effects.
The projection task

What can we do with the situation calculus?

We will see later that it can be used for planning.

A simpler job we can handle directly is called the projection task.

Given a sequence of actions, determine what would be true in the situation that results from performing that sequence.

This can be formalized as follows:

Suppose that $R(s)$ is a formula with a free situation variable s.

To find out if $R(s)$ would be true after performing $\langle a_1, \ldots, a_n \rangle$ in the initial situation, we determine whether or not

$$KB \models R(do(a_n, do(a_{n-1}, \ldots, do(a_1, S_0), \ldots)))$$

For example, using the effect and frame axioms from before, it follows that $\neg \text{Broken}(B, s)$ would hold after doing the sequence

$\langle \text{pickup}(A), \text{pickup}(B), \text{drop}(B), \text{repair}(B), \text{drop}(A) \rangle$
The legality task

The projection task above asks if a condition would hold after performing a sequence of actions, but not whether that sequence can in fact be properly executed.

We call a situation \textit{legal} if it is the initial situation or the result of performing an action whose preconditions are satisfied starting in a legal situation.

The \textit{legality task} is the task of determining whether a sequence of actions leads to a legal situation.

This can be formalized as follows:

To find out if the sequence $\langle a_j, \ldots, a_n \rangle$ can be legally performed in the initial situation, we determine whether or not

$$ KB \models Poss(a_p, do(a_{i-1}, \ldots, do(a_1, S_0) \ldots)) $$

for every i such that $1 \leq i \leq n$.
Limitation: primitive actions

As yet we have no way of handling in the situation calculus complex actions made up of other actions such as

- conditionals: If the car is in the driveway then drive else walk
- iterations: while there is a block on the table, remove one
- nondeterministic choice: pickup up some block and put it on the floor

and others

Would like to define such actions in terms of the primitive actions, and inherit their solution to the frame problem

Need a compositional treatment of the frame problem for complex actions

Results in a novel programming language for discrete event simulation and high-level robot control
The Do formula

For each complex action A, it is possible to define a formula of the situation calculus, $Do(A, s, s')$, that says that action A when started in situation s may legally terminate in situation s'.

Primitive actions: $Do(A, s, s') = Poss(A, s) \land s' = do(A, s)$

Sequence: $Do([A; B], s, s') = \exists s''. Do(A, s, s'') \land Do(B, s'', s')$

Conditionals: $Do([\text{if } \phi \text{ then } A \text{ else } B], s, s') = \phi(s) \land Do(A, s, s') \lor \neg \phi(s) \land Do(B, s, s')$

Nondeterministic branch: $Do([A \mid B], s, s') = Do(A, s, s') \lor Do(B, s, s')$

Nondeterministic choice: $Do([\pi x. A], s, s') = \exists x. Do(A, s, s')$

etc.

Note: programming language constructs with a purely logical situation calculus interpretation
Outline

• Representing Change
• Situation Calculus
 – Fluents and pre-conditions
 – Frame problem and solutions
 – Projection and explanation closure
• Relationship to other formalisms
 – Logic programming (Golog)
 – Description Logics
• An application to represent biological processes
• Other ways to represent change
• Summary
GOLOG

GOLOG (Algol in logic) is a programming language that generalizes conventional imperative programming languages

- the usual imperative constructs + concurrency, nondeterminism, more...
- bottoms out not on operations on internal states (assignment statements, pointer updates) but on primitive actions in the world (e.g. pickup a block)
- what the primitive actions do is user-specified by precondition and successor state axioms

What does it mean to “execute” a GOLOG program?

- find a sequence of primitive actions such that performing them starting in some initial situation s would lead to a situation s’ where the formula \(Do(A, s, s') \) holds
- give the sequence of actions to a robot for actual execution in the world

Note: to find such a sequence, it will be necessary to reason about the primitive actions

\[A : \text{if } \text{Holding}(x) \text{ then } B \text{ else } C \]
GOLOG example

Primitive actions: pickup(x), putonfloor(x), putontable(x)

Fluents: Holding(x,s), OnTable(x,s), OnFloor(x,s)

Action preconditions:
\[\text{Poss}(\text{pickup}(x), s) \equiv \forall z.\neg \text{Holding}(z, s) \]
\[\text{Poss}(\text{putonfloor}(x), s) \equiv \text{Holding}(x, s) \]
\[\text{Poss}(\text{putontable}(x), s) \equiv \text{Holding}(x, s) \]

Successor state axioms:
\[\text{Holding}(x, do(a, s)) \equiv a=\text{pickup}(x) \lor \]
\[\text{Holding}(x, s) \land a\neq \text{putontable}(x) \land a\neq \text{putonfloor}(x) \]
\[\text{OnTable}(x, do(a, s)) \equiv a=\text{putontable}(x) \lor \text{OnTable}(x, s) \land a\neq \text{pickup}(x) \]
\[\text{OnFloor}(x, do(a, s)) \equiv a=\text{putonfloor}(x) \lor \text{OnFloor}(x, s) \land a\neq \text{pickup}(x) \]

Initial situation:
\[\forall x.\neg \text{Holding}(x, S_0) \]
\[\text{OnTable}(x, S_0) \equiv x=A \lor x=B \]

Complex actions:

\[\text{proc ClearTable} : \textbf{while} \ \exists b. \text{OnTable}(b) \ \textbf{do} \ \pi b [\text{OnTable}(b)? ; \text{RemoveBlock}(b)] \]
\[\text{proc RemoveBlock}(x) : \text{pickup}(x) ; \text{putonfloor}(x) \]
Running GOLOG

To find a sequence of actions constituting a legal execution of a GOLOG program, we can use Resolution with answer extraction.

For the above example, we have

\[KB \models \exists s. \text{Do(ClearTable, } S_0, s) \]

The result of this evaluation yields

\[s = \text{do(putonfloor(B), do(pickup(B), do(putonfloor(A), do(pickup(A), S_0))))} \]

and so a correct sequence is

\[\langle \text{pickup(A), putonfloor(A), pickup(B), putonfloor(B)} \rangle \]

When what is known about the actions and initial state can be expressed as Horn clauses, the evaluation can be done in Prolog.

The GOLOG interpreter in Prolog has clauses like

\[
\begin{align*}
do(A, S1, do(A, S1)) & : - \text{prim_action(A), poss(A, S1)}. \\
do(\text{seq}(A, B), S1, S2) & : - do(A, S1, S3), do(B, S3, S2).
\end{align*}
\]

This provides a convenient way of controlling a robot at a high level.
Relationship to Description Logics

- Situation calculus uses first order logic to describe the state of the world
 - The reasoning tasks are undecidable
- Recent work to combine description logics with situation calculus
 - DL concepts can be used for describing the state of the world and pre and post conditions
 - For the ALCQIO description logic, decidability and upper complexity bounds can be derived

Integrating Description Logics and Action Formalisms: First Results
Baader, Lutz, Milicic, Sattler, Wolter
AAAI-2005
Outline

• Representing Change
• Situation Calculus
 – Fluents and pre-conditions
 – Frame problem and solutions
 – Projection and explanation closure
• Relationship to other formalisms
 – Logic programming (Golog)
 – Description Logics
• An application to represent biological processes
• Other ways to represent change
• Summary
In a dividing cell, the mitotic (M) phase alternates with interphase, a growth period. The first part of interphase (G1) is followed by the S phase, when the chromosomes duplicate; G2 is the last part of interphase. In the M phase, mitosis distributes the daughter chromosomes to daughter nuclei, and cytokinesis divides the cytoplasm, producing two daughter cells.

Sample Question:

In some organisms mitosis occurs without cytokinesis occurring. This will result in _____________
Sample Representation of Cell Cycle

<table>
<thead>
<tr>
<th>Statement</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>has-part(cell, chromosome, s)</td>
<td>Indicates the cell has a chromosome.</td>
</tr>
<tr>
<td>number(chromosome, N, s) ⊃ number(daughter-chromosome, 2*N, do(duplicate(chromosome, s)))</td>
<td>Shows that after the duplication, the number of daughter chromosomes is twice the original.</td>
</tr>
<tr>
<td>has-part(cell, chromosome, s) ⊃ ¬has-part(cell, chromosome, do(duplicate(chromosome, s)))</td>
<td>Indicates that the chromosome is duplicated.</td>
</tr>
<tr>
<td>has-part(cell, chromosome, s) ⊃ has-part(cell, daughter-chromosome, do(duplicate(chromosome, s)))</td>
<td>Shows that the daughter chromosome is a part of the cell.</td>
</tr>
<tr>
<td>number(chromosome, N, s) ⊃ number(chromosome, 0, do(duplicate(chromosome, s)))</td>
<td>Indicates the chromosome count is reduced to zero after duplication.</td>
</tr>
<tr>
<td>number(cell, 1, s) ⊃ Number(cell, 2, do(cytokinesis(cell, s)))</td>
<td>Shows the cell undergoes cytokinesis, doubling in number.</td>
</tr>
</tbody>
</table>

Projection shows that in the final state, the cell has twice the number of daughter chromosomes!
Family of Action Reasoning Questions

• What happens when one of the steps in the action sequence is missing?
 – Is the resulting sequence still legal?
 – What is the result of projection of such a sequence?
• Suppose, we observe a specific effect as a result of a certain action sequence, which part of the sequence might be at fault?
 – Do a projection into all possible states and see which one corresponds to the observed state?
 – Reason abductively from the observation to possible causes
Other Ways of Representing Change

- In many applications, one simply needs to state a specific time when a specific predicate holds true
 - Temporal Logic
 - Associate a time argument with a predicate
 - Green (Frog1, T1) ie, Frog1 was green at time T1 where T1 is a time point
 - SunRise(T1, T2) ie, Sun Rise happened between time points T1 and T2
 - An orthogonal issue is how to provide the extra argument
 - Time Point (1:00:00, Now, Midnight Today)
 - Time Interval (2-3, This Week, etc)
 - Duration (1 hour, one day, etc)
 - Branching time (past, possible worlds, …)
Summary

- Situation calculus as a mechanism to represent change using actions, situations and fluents
- Frame problem is to represent complete effects of actions
 - Pre-conditions and effects
 - Successor State Axioms
 - Unique action axioms
- Golog: a programming language to implement situation calculus
- Different ways to incorporate situation calculus into logic programming and description logics
Reading

• Chapter 14 of B&L Textbook