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Abstract This results in the existence of ambiguities in the disparity

assignment. In order to overcome this ambiguity, assump-

Traditionally, the problem of stereo matching has been tions about the smoothness of the disparity function are typ-
addressed either by a local window-based approach or ically made. Real world scenes, however, are only “piece-
a dense pixel-based approach using global optimization. wise smooth” and this is the third factor which makes the
In this paper, we present an algorithm which combines problem hard. The presence of discontinuities causes oc-
window-based local matching into a global optimization clusion and makes disparity assignment very difficult at ob-
framework. Our local matching algorithm assumes that lo- ject boundaries.
cal windows can have at most two disparities. Under this
assumption, the local matching can be performed very ef-
ficiently using graph cuts. The global matching is formu-
lated as minimization of an energy term that takes into ac-
count the matching constraints induced by the local stereo
algorithm. Fast, approximate minimization of this energy is
achieved through graph cuts. The key feature of our algo-
rithm is that it preserves discontinuities both during the lo-
cal as well as global matching phase.

1.1. Previous work

Stereo algorithms that produce sparse disparity maps [1,
2, 21] rely on features such as edges or corners for match-
ing. Many applications of stereo, however, require a dense
disparity map. A dense disparity map may be obtained from
this sparse map through interpolation. This phase is frought
with difficulties and requires making some assumptions
about the scene geometry. More important are stereo algo-
rithms that produce dense disparity maps directly without
1. Introduction the need for interpolation. The work of Zhang and Shan [27]

represent an intermediate approach between the two. Theirs

Stereo is a classical problem in computer vision with is an iterative matching scheme which begins with few reli-
wide ranging applications. In stereo, we are given two im- able features and progressively adds matches during each it-
ages,/; and I, of a sceneS, viewed from two known po-  eration using the matched features as constraints. The work
sitions. The goal, then, is to compute a disparity function presented in [14, 24] follows the above philosophy of iter-
d(z,y) over the entire imagé, (z,y). Although there is a  atively selecting features for matching with the difference
volume of literature on binocular stereo with a number of that the most confident pixels are committed to at each iter-
algorithms that work well on many types of images, still ation.
it is considered to be a difficult problem due to several fac-  Stereo algorithms that produce dense disparity maps can
tors. The first factor is the complex interaction between light be further classified as local or global based on the type
and real world surfaces, which can be specular, can haveof optimization method used. In local methods, the dispar-
inter-reflections or be transparent. In addition, the exact po-ity value at each pixel is chosen independently of other pix-
sition and type of light sources is usually unknown. In clas- els. Since the raw error function of assigning a disparity to a
sical stereo, this problem is often simplified by assuming pixel is noisy, the error function is usually aggregated over a
Lambertian surfaces. The second problem arises from thelocal window. The simplest technique is to use square win-
presence of regions of constant albedo (color) in the scenedows of fixed size [17]. Such algorithms often assume that
all the pixels within this window have the same disparity.
*  This work was carried out while the author was a graduate student at The work of Okutomi and Kanade [13] makes use of adap-

the University of Maryland tive windows. Here, the window size is varied and at each




pixel the size of the window is chosen so as to minimize as minimizing a certain energy function. This energy func-
the disparity uncertainty at that pixel. Geiger et al [8] and tion is presented in Section 3.1. Approximation algorithm
Fusiello et al [7] use a multiple window method where a for minimization of this energy function using graph cuts is
limited number of distinct windows are tried for each pixel next presented in Section 3.3. Results on real data are pre-
and disparity, and the one with best correlation is retained.sented in Section 4. Finally, Section 5 concludes the paper
This is also the idea behind spatially shiftable windows with suggestions for future work.

[5, 14, 25]. The work of Vekseler [26] proposes to overcome

the shape restriction of square/rectangular windows by op-2. Local stereo

timizing matching cost over a large class of “compact” win-

dows. 2.1. Preliminaries

Since these local aggregation methods assume a constant
disparity in these windows, they do not perform well in re-
gions of depth discontinuities. The different approaches o
multiple windows, spatially shiftable windows and “com-
pact windows” is an attempt to overcome this problem by
varying the shape and size of these windows. Global op
timizations methods attempt to overcome this problem by . ; X e
minimizing a certain energy function. The energy function N9 @ disparitya to a pixel(z, y). This will be denoted by
is a combination of a “data term” and a “smoothness term”. ¢ (%, ¥, @). The simplest such error function uses the abso-
Several different methods for the minimization of these en- lute difference of the pixel intensities in the left and right
ergy functions have been used including simulated annealimages i-.eC(z,y,a) = [li(z,y) = I.(z —a, y)|. Other er-
ing [9], relaxation labelling [23] and non-linear diffusion "' functlons_ involve interpolating the mte_nsmes to avoid
of support [19]. Over the last few years, several algorithms S&mMPpling artifacts [3]WW (z, y) denotes a windowV" cen-
for energy minimization based on graph cuts have been preleréd at pixel(z,y). W, is a square window with dimen-
sented. When there are only two disparity labels, Greg etSIONS (22 + 1) x (2 + 1). In other words W (x,y) =
al [10] showed how to find the global minimum using a sin- (%) : [i =2 <h or |j—y| <h}.
gle graph cut. For the multi-disparity case [18, 11, 12, 4] ) )
used graph cuts to find the exact global optimum of certain 2-2. Bi-labelled windows
types of energy functions. Their energy function, however, » ) )
is not discontinuity preserving. Boykov et al [6] have pre- In tradnmnal_wmdow—basgd local gtereo, windows cen-
sented approximate algorithm with a guarantee on boundstefred qt each pl'xel are considered. It is qssurr_\ed that all the
for discontinuity preserving energy functions. This has been pixels in that window have a constant disparity. The error

generalized to enforce the uniqueness constraint by Kolo-t€m IS aggr_egz_ﬂed over _the v_vmdow to give the match!ng
mogorov et al [15]. cost for assigning that disparity to the center of the win-

i ) ) dow. The disparity which minimizes this matching cost is
In this paper, we combine local window-based methods hen, assigned to the center. In mathematical terms,
into a global optimization framework using graph cuts. The

simplest way of doing this, as proposed in [14], is to use d(z,y) = argminCw (2,y,a) (1)
the aggregate error term obtained from window-based lo- .

cal stereo as the “data term” in the global energy function. Cwl(wy,0) = o Z Cli.J: ) (2)
However this ignores the dependencies that exist within this LDHEW (@)
window. The assignment of a particular disparity, y) = The assumption of constant disparity within the window
dy at a pixel(x, y) constrains the disparities at all other pix- is a fundamental limitation of such approaches, which re-
els within the window centered &t:, y). For example, if  sults in an overly smooth disparity map, particularly at ob-
we used the simple aggregate term with constant disparityject boundaries. Local windows, of course, do not have con-
then all pixels within the window should also have disparity stant disparity; they generally have a few number of dispar-
dy. This will however lead to smoothing across discontinu- ity levels. In other words, the range of disparities present
ities, unless the local assignment of disparities takes accountvithin local windows is small. Table 1 illustrates this point
of this. Our window-based local stereo algorithm, which is using the University of Tsukuba ground truth disparities. At
presented in Section 2, avoids this smoothing across dis-each pixel the total number of disparities present within the
continuities. The global minimization framework, which is window centered on that pixel was counted for windows of
discussed in Section 3, then uses this local stereo to prodifferent sizes. The window sizes are listed horizontally and
duce a global labelling which is maximally consistent with the number of disparities present in the window is listed ver-
the labelling induced by local stereo. This can be interpretedtically. Each entry in the table corresponds to the percentage

I, and I, are the left and right images of the stereo pair.
¢ Itis assumed that the input images are rectified. The dispar-
ity at pixel (z, y) is denoted byl(x, y). The disparity func-
tion can take one of th& integer values between the dis-
_parity limits of the scene. At the base of any stereo algo-
rithm is an error function which denotes the error of assign-



Disparity Window | 3x3 | bx5 | 7x7 | 9x9 | 11x11 | 13x13 | 21x21
count size

1 95.21| 86.45| 79.05| 72.82| 67.30 | 62.41 | 47.58
2 4,74 | 13.05| 19.48| 24.41| 28.40 | 31.49 | 37.35
3 0.05 | 0.49 | 140 | 259 | 3.93 5.42 11.89
4 0.00 | 0.01 | 0.07 | 0.18 | 0.37 0.68 3.14

Table 1. Disparity variation within local windows

of pixels which have a particular number of disparities for («,3), « ;é (. For every such pair of disparities, an as-
that window size. For example, the table shows that for win- 5|gnmentd(x p(i:3) V(i,j) € W(z,y) is obtained. The
dow of size7 x 7, only 1.40% of the pixels will have3 dis-
parities for the pixels within that window. Our local stereo B ]
algorithm exploits the limited number of disparities present noted byCy,’(z,y) and is calculated as

in small windows. We assume that within these windows, C{jf(x,y) = >unC (i,j, d?ﬁy)(z‘,j)> where (i,j) €
there are at most two disparities present. The motivation be-yyy(;; ). This is simply the sum of the costs of assigning
hipd the assumpt.ion.o_f two dispa_rities is two-fold. Firstly, the disparityd“ﬁ (4, 7) over all the pixels in the window
this corresponds intuitively to the idea of a background and (@.y) o - :
foreground disparity. Additionally, when there are only two ceqtered g(x, y). Let d<"f Y) denote the minimum cost dis-
disparity labels, thglobal minimum of the corresponding Parity assignment in the window centered:aty) such that
discontinuity preserving energy function can be found very the center(z, y) gets a labed |..e. d((lmzy).(m’ y) = aand let
efficiently using a single graph cut [10]. Intuitively, the as- Cii(z,y) be the corresponding minimum aggregate cost
sumption that the local windows are bi-labelled can be seenfU”Ct'On Thendf, , can be computed by finding among
as a discontinuity preserving smoothness constraint and all 3, the one that gives minimum‘“ﬁ(x y), provided, of
general|zat|0n of the aSSUmptlon that all the plXElS within Coursedaﬁ ass|gns a label to ({E y) Mathema“ca”y,

a local window have a single disparity label. In the next
subsection, we give a sketch of how to perform this min-

aggregate cost of the local disparity functi@#ﬁy)) is de-

N ; ~ = arg min Caﬁ( ) andd?ﬁ (z,y) =« 3)
imization for the case of two labels. Details can be found B oY)
in [10, 11, 6]. (o) = A(n ) ANACY (2, y) = Oy (2,y) 4)

Note that it may happen that there does not exist@sych

thatd?m ) (@,y) = a. Inthat caséz, y) will never get a la-

belo andC§, (x,y) = oo

2.3. Graph cut for exact minimization of bi-
labelled disparities

In the case of two labelga, 3), the labelling corre-
sponding to minimum energy is found by finding a mini- 2.5. Computational considerations
mum cut through a certain graph. Each pikely) corre-
sponds to a nodg of the graph. In addition, there are two Computing and storing, , for each pixel(z,y) and
additional nodes corresponding to the souigg) and sink  « can be computationally as well as memory intensive. To
(S1). There are edges from the source to every nodith make this computation tractable, we instead compute the
weight Sop = C(z,y, «) and also edges fromto the sink labelling of disparities over the entire image for each dis-
with edge weight®S; = C(z,y, 8). In addition, for every  parity pair (o) to produce a disparity assignment over
pair of neighborgz,y) and(z — 1,y) or (z,y — 1) there the entire image@ﬁ). The bi-labelled disparity assign-
is an edge connecting the corresponding ngdmsdg with ment for a particular pixel®” (z, i) and the aggregated cost
edge weight;(p, ¢), whereU; (p, ) is a penalty for assign- 7 (, ) may then be extracted by considering the assign-
ing different labels to neighboring nodes §¢). A minimum ments of Iabels in the window (z, ) centered atz, y).

cut of this graph then corresponds to a labelling with mini- j o d ,j) =dP(i,5) V(i,j) € W(z,y). As already

mum energy. pomteg out minimization using two labels is exact, irre-
spective of the size of the window. Thus, the only drawback

2.4. Local stereo using bi-labelled windows of this scheme is that the pixels which are on the bound-

ary of the window influence the labelling inside the win-
The above local stereo for two labels is applied to win- dow. As the size of the window increases, the proportion of
dows centered on each pixgt, y) for each disparity pair  boundary pixels decreases and thus this boundary influence



decreases. For a sufficiently large window size, this “bound- the assignments (¢) is not present in the current labelling.
ary” effect will only be significant in untextured windows, This energy function is different from the standard Potts dis-
wherein, the disparity labelling is ambiguous. continuity energy and is similar to Potts energy on assign-
ments used in [15]. Thus the energy of a labelling
3. Global minimization framework for win-
dows E(d) = zp: Egaip) + > Uy (p,q).T (d(q) # d3(a))

qEW (p)
The local window based stereo algorithm computes for Q)

each pixel(z, y) and each disparity, the aggregated total - xact minimization of this energy function can be shown to
costCy (x,y) and the local disparity as_s'gnme’_u%,@; be NP-hard. Therefore, we need to consider approximate al-
The goal of the global stereo algorithm is to assign dispar- gqrithms for this minimization. In the next section, we give
ities to each pixeld(z, ), in a manner consistent with the - yeails about how alpha expansion [6] moves can be used to

local disparity assignments. That is, if a piXel y) is as- perform this minimization efficiently.
signed a disparityy, then all the pixels inV (x,y) must

have disparities defined bg{*my) We accomplish this also
using a graph cut algorithm. Two features of our algorithm
are 1. the corresponding discontinuity energy term i_s based The single step of the expansion move algorithm is called
on the pott's energy of assignments [15]. 2. the neighbor- ,_expansion. Suppose that we have some current labelling
hood re_Iatloq of nodes in the graph is defmed to bg across; and we are considering a label The a-expansion move
the entire window rather than adjacent pixels. It is also regyits in a new labelling’ and satisfies the property that
worth emphasgmg the fact thqt this algorithm is indepen- ¢4, any pixelp eitherd (p) = d(p) or d'(p) = a. That is,
dent of the particular local algorithm used to compifie,,  the pixel may retain its old label or change its labekto
as long as the local algorithm is discontinuity preserving.  The |abela is repeatedly chosen in some order (fixed or
random) and thex-expansion move is then applied. If this
3.1. Energy function move results in a decrease in the total energy, then we sim-
ply change our current labelling t8. If there is no sucla
The energy of a labelling can be calculated as the sum hijch results in a decrease of energy, we are done. The crit-
of the energies of the individual pixelsi(d) = 3, Ei(«) ical step in this algorithm is to efficiently compute the
wherep denotes the single pixélr,y) anda = d(p) is  expansion move resulting in the largest reduction in the en-
the label ofp underd. The energyE; is composed of two  ergy. Kolomogorov et al [16] have characterized the class of
terms: the data ternij,; and the penalty ternipen FOr - energy functions that can be minimized by graph cuts. For
the data term, the aggregated local a0t (p) is the natu-  the problem of pixel labelling using-expansion moves, the
ral choice. The trick, however, is in the proper choice of the energy function is required to be a metric. For the case of
penalty term so as to make the minimization tractable. Con- metric energy functions (eg. Potts energy model), other au-
sider all the pixels; in the neighborhoodV (p) of p. The  thors have used graph cuts to find taegestreduction in
disparity atq, as determined by the local disparity assign- the energy [15, 6]. It can be shown that our energy function
ment in the window centered gatis dj;(¢) andd(q) isthe  (equation 7) is not metric and hence a graph cut based ap-
disparity atq under the labellingl. These two disparities  proach is not guaranteed to find thegestdecrease in en-
must conform with each other. Therefore, there is a posi- ergy. Nevertheless, graph cuts can still be used toléirg
tive penalty incurred iti(q) # dj(q). Let this penalty be  reductions in the energy and in the next section, we show

dhenoged by, (p, q). One choice of the penalty term would oW o-expansion moves can be used to minimize this en-

Epenl(p) = > U, (p,q) (5)

q€W (p),dg (q)#d(q)

3.2. Minimization using expansion moves

3.3. a-expansion using graph cuts

The same constraint can also be expressed through a differ- FOr @ current labellingl and a disparity, a directed
ent penalty function graph S, = (V,, &) is constructed. Each pixel corre-

sponds to a node of the graph. In addition there are two
E3anp) = U, (p,q).T (d(q) # d°(q (6) special nodesr and a which are the source and the sink
per( ) (Ie%;(p) s (P:0) ( @ 2 )) nodes for the maximum flow computation. There is an edge
from the source to each node of the grafjrand the edge
whereT'(.) is 1 if its argument is true and otherwise. Ba- ¢ connectsp to the sink. For every pair of pixels and
sically, the above function imposes a pendliy (p, q) if q such thatp € W(q) (or equivalentlyg € W (p)) there



edge [ weight | for \

tp o0 d(p) =«
to | Cwp)+ d(p) = 5,6 # o
> gewp) Us(p: @) dj(q) # o and dJ(q) # d(q)
ty Cy (p)+
2 gew(p Ys(p: ) dy(q) # o and d;(q) # d(q)
epay | Ugp @) (T(X)+T(Y)) | X=df(p) =«
Y =d,(q) =d(g), 8 =d(p)
etap} | Ugla,p) (T(X)+T(Y)) | X =dy(q) =
Y =d(p) = d(p), 5 = d(q)

Table 2. Edge weights for «-expansion

are directed edgesy, ,; andey, 1. The weights of these  the pixel matching score and the scoretdt-step displace-
edges are given in Table 2. These particular weights cor-ments or0 if there is a sign change in either interval. This
respond to the energy function in equation 7. It is easy to matching score is then truncated to a maximum value to ob-
see that the minimum cuit on G, is then onex-expansion  tain a robust matching score. For color images, this mea-
away fromd. The new labelling corresponding to this cut sure is computed for each channel separately and the final
then isd’, whered'(p) = a if &) € C andd'(p) = d(p) if score is the average of the scores in each channel.

to € €. As pointed out earlier, since our energy functionis  Our algorithm has three parameters. The first is the size
not a metric, the graph cut is not guaranteed to finddthe  of the window to be used. In our experiments we have used
expansion move resulting in the largest decrease in energywindows of size7 x 7 and11 x 11. In addition, we have
However, in practice the performance of this greedy mini- two lambda’s,)\; is the parameter that controls the level
mization technique is quite good and is presented in the nextof smoothness in local stereo optimization apdcontrols
section. the smoothness for global optimization. Following other au-
thors [6, 20, 15], we have used static cues in order to align
the discontinuities along edges. This is achieved by using

4. Results the following function for the penalty term

There has been a need in the computer vision commu- oA if |, —I| <5
nity to set up a test bed for quantitative evaluation and U(p,q) = { Aoroif | I Iq‘ > 9)
comparison of different stereo algorithms. Towards this ' P
end, Scharstein and Szeliski [20] have set up test dataThis penalty term is used both in the localY and global

along with ground truth which is available at their website (U,) optimization steps with the appropriate lambdals (
(www.middlebury.edu/stereo ). We have evaluated or Ag)-

our proposed algorithm on these test data sets. The metric  For all our experimentd; = 8. For7 x 7 windows, best
used for evaluating the algorithm is the percentage of badyesyits were obtained using, = 1.0 and for1l x 11 win-

matching pixels dows, )\, = 0.8. The cost of labelling a pixel as occluded
1 was fixed at20 in all cases. Table 3 shows the percentage
B=— Z (lde(zyy) — dr(z,y)| > 1) (8) of bad matching pixels obtained as a result of applying our
N () algorithm to the four data sets available. For comparison

purpose, the results obtained from other dense stereo al-
Here dr(z,y) is the true disparity at pixe(z,y) and gorithms have also been included. These are Belief Prop-
dc(x,y) is the calculated disparity by the proposed al- agation (Belief) [22], Graph Cuts (GraphCut) [6], Graph
gorithm. This measuré3 is calculated at various regions Cuts with occlusion (GraphCutOcc) [15] and compact win-
of the input image which have been classified as untex-dows (CompWin) [26]. From the table it is clear that ex-
tured (untex), discontinuity (disc) and the entire image cept for the venus dataset, the error rate is lower for win-
(all). dow sizell as compared to using windows of sizeAlso,

For our data term (error in assigning a disparity to a for window sizel1, the results are better than using a global
pixel), we have used the technique of Birchfield and Tomasi graph cut alone (GraphCut). Overall, the results of our al-
[3, 6, 20] to obtain an error term that is insensitive to image gorithm on these datasets was comparable to other “state
sampling. This is accomplished by taking the minimum of of the art” stereo algorithms listed on the stereo website



Algorithm Tsukuba Sawtooth Venus Map

all untex disc | all untex disc| all untex disc | all disc
Window 7 1.88 1.29 10.01 | 1.46 0.17 542|136 1.56 8.65 | 048 5.15
Window 11 1.78 122 9.71 1.17 0.08 555|161 225 9.06 | 0.32 3.33
Belief 1.15 042 6.31 | 098 030 483|100 0.76 9.13 | 0.84 5.27
GraphCut 1.94 1.09 9.49 1.30 0.06 634|179 261 6.91 | 031 3.88
GraphCutOcc| 1.27 0.43 6.90 | 0.36 0.00 3.65 | 2.79 539 254 1.79 10.08
CompWin 3.36  3.54 12.91 | 1.61 0.45 7.87 | 1.67 2.18 13.24 | 0.33 3.94

Table 3. Results for stereo

(www.middlebury.edu/stereo ). The disparity map
obtained using &1 x 11 window is shown in Figure 1 along
with the ground truth disparity map. Typical running time
for window sizell is a few minutes on a Pentium 1.7 Ghz
machine.

5. Conclusion

By observing that there are usually no more than two dis-
parity levels in a small neighborhood of individual pixels,
we have presented a graph cut based algorithm for com-
bining window-based local stereo into a global optimiza-
tion framework. For local bi-labeling, the graph cut method
is applied to find the best score of all possible disparity
pairs. The optimal solution is used in the global optimiza-
tion to compute the compatibility of disparity values be-
tween neighboring pixels. Instead of the smoothing energy
term usually used in MRF, the bi-labeling is used to sup-
port the final disparity map that agrees with the local bi-
labeling results, thereby preserving the disparity disconti-
nuities. We have applied our algorithm on several stereo
data sets and have presented quantitative evaluation of our
method with several others. Experiments on real data in-
dicate that our results are comparable to other pixel-based
as well as window-based stereo methods. Our approach of
combining window based local stereo into a global opti-

mization framework using graph cuts fits in well with other 4,

schemes and takes a step towards completing the matrix of
stereo algorithms.
Some of the key areas of future work are

1. Computational speedup: As discussed in Section 2.5,
for computational speedup, instead of computing the
bi-labelling for windows around all the individual pix-
els, the bi-labeling need only be computed on the entire
image. However, for large number of disparities, even
this can be computationally prohibitive. We can usu- 6.
ally limit the disparities that can be assigned to each
pixel based on the error of assigning that disparity to

Another approach that can be applied is to find all the
disparities assigned to a pixel by varying the smooth-
ness parameter of a global algorithm and then we can
choose the pairs of disparities that can be assigned to
each pixel from these assignments.

. Selection of window size: Our paper considers fixed

size windows. For this scenario, the appropriate size of
the window to be used plays a very important role. Au-
tomatic selection of the window size to be used for a
given stereo pair is an important area of future work. In
addition, it is easy to see that no fixed window size will
work well for all areas of the image. In particular, our
local window based stereo algorithm relies on the as-
sumption that local windows have at most two dispar-
ities, which will fail for large sizes of window. There-
fore, ideally, we would like to automatically select the
window size at each pixel. Incorporation of variable
window size is likely to increase the performance of
our algorithm.

3. Generalizing bi-labelled local stereo: Our local win-

dow based stereo is based on the assumption that the
window is bi-labelled. Although this assumption is
valid for most of the image (provided the window size

is small), still it is not general enough and needs to be
generalized.

Incorporating occlusion & unigueness constraint: Our
global optimization framework does not currently han-
dle the uniqueness constraint in the right image. Kolo-
mogorov and Zabih [15] have incorporated this con-
straint using a different graph construction. It is easy
to incorporate this method of graph construction in our
global minimization framework. This, we believe, will
lead to further improvements.
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Figure 1. The results of applying our algorithm to different data sets for a 11 x 11 window size.




