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Abstract

Traditionally, the problem of stereo matching has been
addressed either by a local window-based approach or
a dense pixel-based approach using global optimization.
In this paper, we present an algorithm which combines
window-based local matching into a global optimization
framework. Our local matching algorithm assumes that lo-
cal windows can have at most two disparities. Under this
assumption, the local matching can be performed very ef-
ficiently using graph cuts. The global matching is formu-
lated as minimization of an energy term that takes into ac-
count the matching constraints induced by the local stereo
algorithm. Fast, approximate minimization of this energy is
achieved through graph cuts. The key feature of our algo-
rithm is that it preserves discontinuities both during the lo-
cal as well as global matching phase.

1. Introduction

Stereo is a classical problem in computer vision with
wide ranging applications. In stereo, we are given two im-
ages,Il andIr of a scene,S, viewed from two known po-
sitions. The goal, then, is to compute a disparity function
d(x, y) over the entire imageIl(x, y). Although there is a
volume of literature on binocular stereo with a number of
algorithms that work well on many types of images, still
it is considered to be a difficult problem due to several fac-
tors. The first factor is the complex interaction between light
and real world surfaces, which can be specular, can have
inter-reflections or be transparent. In addition, the exact po-
sition and type of light sources is usually unknown. In clas-
sical stereo, this problem is often simplified by assuming
Lambertian surfaces. The second problem arises from the
presence of regions of constant albedo (color) in the scene.
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This results in the existence of ambiguities in the disparity
assignment. In order to overcome this ambiguity, assump-
tions about the smoothness of the disparity function are typ-
ically made. Real world scenes, however, are only “piece-
wise smooth” and this is the third factor which makes the
problem hard. The presence of discontinuities causes oc-
clusion and makes disparity assignment very difficult at ob-
ject boundaries.

1.1. Previous work

Stereo algorithms that produce sparse disparity maps [1,
2, 21] rely on features such as edges or corners for match-
ing. Many applications of stereo, however, require a dense
disparity map. A dense disparity map may be obtained from
this sparse map through interpolation. This phase is frought
with difficulties and requires making some assumptions
about the scene geometry. More important are stereo algo-
rithms that produce dense disparity maps directly without
the need for interpolation. The work of Zhang and Shan [27]
represent an intermediate approach between the two. Theirs
is an iterative matching scheme which begins with few reli-
able features and progressively adds matches during each it-
eration using the matched features as constraints. The work
presented in [14, 24] follows the above philosophy of iter-
atively selecting features for matching with the difference
that the most confident pixels are committed to at each iter-
ation.

Stereo algorithms that produce dense disparity maps can
be further classified as local or global based on the type
of optimization method used. In local methods, the dispar-
ity value at each pixel is chosen independently of other pix-
els. Since the raw error function of assigning a disparity to a
pixel is noisy, the error function is usually aggregated over a
local window. The simplest technique is to use square win-
dows of fixed size [17]. Such algorithms often assume that
all the pixels within this window have the same disparity.
The work of Okutomi and Kanade [13] makes use of adap-
tive windows. Here, the window size is varied and at each



pixel the size of the window is chosen so as to minimize
the disparity uncertainty at that pixel. Geiger et al [8] and
Fusiello et al [7] use a multiple window method where a
limited number of distinct windows are tried for each pixel
and disparity, and the one with best correlation is retained.
This is also the idea behind spatially shiftable windows
[5, 14, 25]. The work of Vekseler [26] proposes to overcome
the shape restriction of square/rectangular windows by op-
timizing matching cost over a large class of “compact” win-
dows.

Since these local aggregation methods assume a constant
disparity in these windows, they do not perform well in re-
gions of depth discontinuities. The different approaches of
multiple windows, spatially shiftable windows and “com-
pact windows” is an attempt to overcome this problem by
varying the shape and size of these windows. Global op-
timizations methods attempt to overcome this problem by
minimizing a certain energy function. The energy function
is a combination of a “data term” and a “smoothness term”.
Several different methods for the minimization of these en-
ergy functions have been used including simulated anneal-
ing [9], relaxation labelling [23] and non-linear diffusion
of support [19]. Over the last few years, several algorithms
for energy minimization based on graph cuts have been pre-
sented. When there are only two disparity labels, Greg et
al [10] showed how to find the global minimum using a sin-
gle graph cut. For the multi-disparity case [18, 11, 12, 4]
used graph cuts to find the exact global optimum of certain
types of energy functions. Their energy function, however,
is not discontinuity preserving. Boykov et al [6] have pre-
sented approximate algorithm with a guarantee on bounds
for discontinuity preserving energy functions. This has been
generalized to enforce the uniqueness constraint by Kolo-
mogorov et al [15].

In this paper, we combine local window-based methods
into a global optimization framework using graph cuts. The
simplest way of doing this, as proposed in [14], is to use
the aggregate error term obtained from window-based lo-
cal stereo as the “data term” in the global energy function.
However this ignores the dependencies that exist within this
window. The assignment of a particular disparityd(x, y) =
d0 at a pixel(x, y) constrains the disparities at all other pix-
els within the window centered at(x, y). For example, if
we used the simple aggregate term with constant disparity
then all pixels within the window should also have disparity
d0. This will however lead to smoothing across discontinu-
ities, unless the local assignment of disparities takes account
of this. Our window-based local stereo algorithm, which is
presented in Section 2, avoids this smoothing across dis-
continuities. The global minimization framework, which is
discussed in Section 3, then uses this local stereo to pro-
duce a global labelling which is maximally consistent with
the labelling induced by local stereo. This can be interpreted

as minimizing a certain energy function. This energy func-
tion is presented in Section 3.1. Approximation algorithm
for minimization of this energy function using graph cuts is
next presented in Section 3.3. Results on real data are pre-
sented in Section 4. Finally, Section 5 concludes the paper
with suggestions for future work.

2. Local stereo

2.1. Preliminaries

Il andIr are the left and right images of the stereo pair.
It is assumed that the input images are rectified. The dispar-
ity at pixel (x, y) is denoted byd(x, y). The disparity func-
tion can take one of theK integer values between the dis-
parity limits of the scene. At the base of any stereo algo-
rithm is an error function which denotes the error of assign-
ing a disparityα to a pixel(x, y). This will be denoted by
C(x, y, α). The simplest such error function uses the abso-
lute difference of the pixel intensities in the left and right
images i.e.C(x, y, α) = |Il(x, y)− Ir(x−α, y)|. Other er-
ror functions involve interpolating the intensities to avoid
sampling artifacts [3].W (x, y) denotes a windowW cen-
tered at pixel(x, y). Wh is a square window with dimen-
sions(2h + 1) × (2h + 1). In other words,Wh(x, y) =
{(i, j) : |i− x| ≤ h or |j − y| ≤ h}.

2.2. Bi-labelled windows

In traditional window-based local stereo, windows cen-
tered at each pixel are considered. It is assumed that all the
pixels in that window have a constant disparity. The error
term is aggregated over the window to give the matching
cost for assigning that disparity to the center of the win-
dow. The disparity which minimizes this matching cost is
then assigned to the center. In mathematical terms,

d(x, y) = arg min
α

CW (x, y, α) (1)

CW (x, y, α) =
∑

(i,j)∈W (x,y)

C(i, j, α) (2)

The assumption of constant disparity within the window
is a fundamental limitation of such approaches, which re-
sults in an overly smooth disparity map, particularly at ob-
ject boundaries. Local windows, of course, do not have con-
stant disparity; they generally have a few number of dispar-
ity levels. In other words, the range of disparities present
within local windows is small. Table 1 illustrates this point
using the University of Tsukuba ground truth disparities. At
each pixel the total number of disparities present within the
window centered on that pixel was counted for windows of
different sizes. The window sizes are listed horizontally and
the number of disparities present in the window is listed ver-
tically. Each entry in the table corresponds to the percentage



Disparity Window 3×3 5×5 7×7 9×9 11×11 13×13 21×21
count size
1 95.21 86.45 79.05 72.82 67.30 62.41 47.58
2 4.74 13.05 19.48 24.41 28.40 31.49 37.35
3 0.05 0.49 1.40 2.59 3.93 5.42 11.89
4 0.00 0.01 0.07 0.18 0.37 0.68 3.14

Table 1. Disparity variation within local windows

of pixels which have a particular number of disparities for
that window size. For example, the table shows that for win-
dow of size7× 7, only 1.40% of the pixels will have3 dis-
parities for the pixels within that window. Our local stereo
algorithm exploits the limited number of disparities present
in small windows. We assume that within these windows,
there are at most two disparities present. The motivation be-
hind the assumption of two disparities is two-fold. Firstly,
this corresponds intuitively to the idea of a background and
foreground disparity. Additionally, when there are only two
disparity labels, theglobal minimum of the corresponding
discontinuity preserving energy function can be found very
efficiently using a single graph cut [10]. Intuitively, the as-
sumption that the local windows are bi-labelled can be seen
as a discontinuity preserving smoothness constraint and a
generalization of the assumption that all the pixels within
a local window have a single disparity label. In the next
subsection, we give a sketch of how to perform this min-
imization for the case of two labels. Details can be found
in [10, 11, 6].

2.3. Graph cut for exact minimization of bi-
labelled disparities

In the case of two labels,(α, β), the labelling corre-
sponding to minimum energy is found by finding a mini-
mum cut through a certain graph. Each pixel(x, y) corre-
sponds to a nodep of the graph. In addition, there are two
additional nodes corresponding to the source(S0) and sink
(S1). There are edges from the source to every nodep with
weightS0p = C(x, y, α) and also edges fromp to the sink
with edge weightspS1 = C(x, y, β). In addition, for every
pair of neighbors(x, y) and(x − 1, y) or (x, y − 1) there
is an edge connecting the corresponding nodesp andq with
edge weightUl(p, q), whereUl(p, q) is a penalty for assign-
ing different labels to neighboring nodes (p, q). A minimum
cut of this graph then corresponds to a labelling with mini-
mum energy.

2.4. Local stereo using bi-labelled windows

The above local stereo for two labels is applied to win-
dows centered on each pixel(x, y) for each disparity pair

(α, β), α 6= β. For every such pair of disparities, an as-
signmentdαβ

(x,y)(i, j) ∀(i, j) ∈ W (x, y) is obtained. The

aggregate cost of the local disparity function (dαβ
(x,y)) is de-

noted byCαβ
W (x, y) and is calculated as

Cαβ
W (x, y) =

∑
(i,j) C

(
i, j, dαβ

(x,y)(i, j)
)

where (i, j) ∈
W (x, y). This is simply the sum of the costs of assigning
the disparitydαβ

(x,y)(i, j) over all the pixels in the window
centered at(x, y). Let dα

(x,y) denote the minimum cost dis-
parity assignment in the window centered at(x, y) such that
the center(x, y) gets a labelα i.e. dα

(x,y)(x, y) = α and let
Cα

W (x, y) be the corresponding minimum aggregate cost
function. Then,dα

(x,y) can be computed by finding among

all β, the one that gives minimumCαβ
W (x, y), provided, of

course,dαβ
(x,y) assigns a labelα to (x, y). Mathematically,

γ = arg min
β

Cαβ
W (x, y) anddαβ

(x,y)(x, y) = α (3)

dα
(x,y) = dαγ

(x,y) andCα
W (x, y) = Cαγ

W (x, y) (4)

Note that it may happen that there does not exist anyβ such
thatdαβ

(x,y)(x, y) = α. In that case(x, y) will never get a la-
belα andCα

W (x, y) = ∞.

2.5. Computational considerations

Computing and storingdα
(x,y) for each pixel(x, y) and

α can be computationally as well as memory intensive. To
make this computation tractable, we instead compute the
labelling of disparities over the entire image for each dis-
parity pair (αβ) to produce a disparity assignment over
the entire image (dαβ

g ). The bi-labelled disparity assign-
ment for a particular pixeldαβ(x, y) and the aggregated cost
Cαβ

W (x, y) may then be extracted by considering the assign-
ments of labels in the windowW (x, y) centered at(x, y).
i.e.dαβ

(x,y)(i, j) = dαβ
g (i, j) ∀(i, j) ∈ W (x, y). As already

pointed out, minimization using two labels is exact, irre-
spective of the size of the window. Thus, the only drawback
of this scheme is that the pixels which are on the bound-
ary of the window influence the labelling inside the win-
dow. As the size of the window increases, the proportion of
boundary pixels decreases and thus this boundary influence



decreases. For a sufficiently large window size, this “bound-
ary” effect will only be significant in untextured windows,
wherein, the disparity labelling is ambiguous.

3. Global minimization framework for win-
dows

The local window based stereo algorithm computes for
each pixel(x, y) and each disparityα, the aggregated total
costCα

W (x, y) and the local disparity assignmentsdα
(x,y).

The goal of the global stereo algorithm is to assign dispar-
ities to each pixel,d(x, y), in a manner consistent with the
local disparity assignments. That is, if a pixel(x, y) is as-
signed a disparityα, then all the pixels inW (x, y) must
have disparities defined bydα

(x,y). We accomplish this also
using a graph cut algorithm. Two features of our algorithm
are 1. the corresponding discontinuity energy term is based
on the pott’s energy of assignments [15]. 2. the neighbor-
hood relation of nodes in the graph is defined to be across
the entire window rather than adjacent pixels. It is also
worth emphasizing the fact that this algorithm is indepen-
dent of the particular local algorithm used to computedα

(x,y)

as long as the local algorithm is discontinuity preserving.

3.1. Energy function

The energy of a labellingd can be calculated as the sum
of the energies of the individual pixels :E(d) =

∑
p El(α)

wherep denotes the single pixel(x, y) and α = d(p) is
the label ofp underd. The energyEl is composed of two
terms: the data termEdat and the penalty termEpen. For
the data term, the aggregated local costCα

W (p) is the natu-
ral choice. The trick, however, is in the proper choice of the
penalty term so as to make the minimization tractable. Con-
sider all the pixelsq in the neighborhoodW (p) of p. The
disparity atq, as determined by the local disparity assign-
ment in the window centered atp is dα

p (q) andd(q) is the
disparity atq under the labellingd. These two disparities
must conform with each other. Therefore, there is a posi-
tive penalty incurred ifd(q) 6= dα

p (q). Let this penalty be
denoted byUg(p, q). One choice of the penalty term would
then be

E1
pen(p) =

∑

q∈W (p),dα
p (q)6=d(q)

Ug (p, q) (5)

The same constraint can also be expressed through a differ-
ent penalty function

E2
pen(p) =

∑

q∈W (p)

Ug (p, q) .T
(
d(q) 6= dα

p (q)
)

(6)

whereT (.) is 1 if its argument is true and0 otherwise. Ba-
sically, the above function imposes a penaltyUg (p, q) if

the assignmentdα
p (q) is not present in the current labelling.

This energy function is different from the standard Potts dis-
continuity energy and is similar to Potts energy on assign-
ments used in [15]. Thus the energy of a labellingd is

E(d) =
∑

p

Edat(p) +
∑

q∈W (p)

Ug (p, q) .T
(
d(q) 6= dα

p (q)
)

(7)

Exact minimization of this energy function can be shown to
be NP-hard. Therefore, we need to consider approximate al-
gorithms for this minimization. In the next section, we give
details about how alpha expansion [6] moves can be used to
perform this minimization efficiently.

3.2. Minimization using expansion moves

The single step of the expansion move algorithm is called
α-expansion. Suppose that we have some current labelling
d and we are considering a labelα. Theα-expansion move
results in a new labellingd′ and satisfies the property that
for any pixelp eitherd′(p) = d(p) or d′(p) = α. That is,
the pixel may retain its old label or change its label toα.
The labelα is repeatedly chosen in some order (fixed or
random) and theα-expansion move is then applied. If this
move results in a decrease in the total energy, then we sim-
ply change our current labelling tod′. If there is no suchα
which results in a decrease of energy, we are done. The crit-
ical step in this algorithm is to efficiently compute theα-
expansion move resulting in the largest reduction in the en-
ergy. Kolomogorov et al [16] have characterized the class of
energy functions that can be minimized by graph cuts. For
the problem of pixel labelling usingα-expansion moves, the
energy function is required to be a metric. For the case of
metric energy functions (eg. Potts energy model), other au-
thors have used graph cuts to find thelargest reduction in
the energy [15, 6]. It can be shown that our energy function
(equation 7) is not metric and hence a graph cut based ap-
proach is not guaranteed to find thelargestdecrease in en-
ergy. Nevertheless, graph cuts can still be used to findlarge
reductions in the energy and in the next section, we show
how α-expansion moves can be used to minimize this en-
ergy.

3.3. α-expansion using graph cuts

For a current labellingd and a disparityα, a directed
graph Gα = 〈Vα, Eα〉 is constructed. Each pixel corre-
sponds to a node of the graph. In addition there are two
special nodesα and ᾱ which are the source and the sink
nodes for the maximum flow computation. There is an edge
from the source to each node of the graphtαp and the edge
tᾱp connectsp to the sink. For every pair of pixelsp and
q such thatp ∈ W (q) (or equivalentlyq ∈ W (p)) there



edge weight for

tᾱp ∞ d(p) = α

tᾱp Cβ
W (p)+ d(p) = β, β 6= α∑
q∈W (p) Ug(p, q) dβ

p (q) 6= α and dβ
p (q) 6= d(q)

tαp Cα
W (p)+∑
q∈W (p) Ug(p, q) dα

p (q) 6= α and dα
p (q) 6= d(q)

e{p,q} Ug(p, q) (T (X) + T (Y )) X ≡ dα
q (p) = α

Y ≡ dβ
p (q) = d(q), β = d(p)

e{q,p} Ug(q, p) (T (X) + T (Y )) X ≡ dα
p (q) = α

Y ≡ dβ
q (p) = d(p), β = d(q)

Table 2. Edge weights for α-expansion

are directed edgese{p,q} ande{q,p}. The weights of these
edges are given in Table 2. These particular weights cor-
respond to the energy function in equation 7. It is easy to
see that the minimum cutC on Gα is then oneα-expansion
away fromd. The new labelling corresponding to this cut
then isd′, whered′(p) = α if tαp ∈ C andd′(p) = d(p) if
tᾱp ∈ C. As pointed out earlier, since our energy function is
not a metric, the graph cut is not guaranteed to find theα-
expansion move resulting in the largest decrease in energy.
However, in practice the performance of this greedy mini-
mization technique is quite good and is presented in the next
section.

4. Results

There has been a need in the computer vision commu-
nity to set up a test bed for quantitative evaluation and
comparison of different stereo algorithms. Towards this
end, Scharstein and Szeliski [20] have set up test data
along with ground truth which is available at their website
(www.middlebury.edu/stereo ). We have evaluated
our proposed algorithm on these test data sets. The metric
used for evaluating the algorithm is the percentage of bad
matching pixels

B =
1
N

∑

(x,y)

(|dC(x, y)− dT (x, y)| > 1) (8)

Here dT (x, y) is the true disparity at pixel(x, y) and
dC(x, y) is the calculated disparity by the proposed al-
gorithm. This measureB is calculated at various regions
of the input image which have been classified as untex-
tured (untex), discontinuity (disc) and the entire image
(all).

For our data term (error in assigning a disparity to a
pixel), we have used the technique of Birchfield and Tomasi
[3, 6, 20] to obtain an error term that is insensitive to image
sampling. This is accomplished by taking the minimum of

the pixel matching score and the score at± 1
2 -step displace-

ments or0 if there is a sign change in either interval. This
matching score is then truncated to a maximum value to ob-
tain a robust matching score. For color images, this mea-
sure is computed for each channel separately and the final
score is the average of the scores in each channel.

Our algorithm has three parameters. The first is the size
of the window to be used. In our experiments we have used
windows of size7 × 7 and11 × 11. In addition, we have
two lambda’s,λl is the parameter that controls the level
of smoothness in local stereo optimization andλg controls
the smoothness for global optimization. Following other au-
thors [6, 20, 15], we have used static cues in order to align
the discontinuities along edges. This is achieved by using
the following function for the penalty term

U(p, q) =
{

2λ : if |Ip − Iq| ≤ 5
λ : if |Ip − Iq| > 5 (9)

This penalty term is used both in the local (Ul) and global
(Ug) optimization steps with the appropriate lambda’s (λl

or λg).
For all our experimentsλl = 8. For7× 7 windows, best

results were obtained usingλg = 1.0 and for11 × 11 win-
dows,λg = 0.8. The cost of labelling a pixel as occluded
was fixed at20 in all cases. Table 3 shows the percentage
of bad matching pixels obtained as a result of applying our
algorithm to the four data sets available. For comparison
purpose, the results obtained from other dense stereo al-
gorithms have also been included. These are Belief Prop-
agation (Belief) [22], Graph Cuts (GraphCut) [6], Graph
Cuts with occlusion (GraphCutOcc) [15] and compact win-
dows (CompWin) [26]. From the table it is clear that ex-
cept for the venus dataset, the error rate is lower for win-
dow size11 as compared to using windows of size7. Also,
for window size11, the results are better than using a global
graph cut alone (GraphCut). Overall, the results of our al-
gorithm on these datasets was comparable to other “state
of the art” stereo algorithms listed on the stereo website



Algorithm Tsukuba Sawtooth Venus Map
all untex disc all untex disc all untex disc all disc

Window 7 1.88 1.29 10.01 1.46 0.17 5.42 1.36 1.56 8.65 0.48 5.15
Window 11 1.78 1.22 9.71 1.17 0.08 5.55 1.61 2.25 9.06 0.32 3.33
Belief 1.15 0.42 6.31 0.98 0.30 4.83 1.00 0.76 9.13 0.84 5.27
GraphCut 1.94 1.09 9.49 1.30 0.06 6.34 1.79 2.61 6.91 0.31 3.88
GraphCutOcc 1.27 0.43 6.90 0.36 0.00 3.65 2.79 5.39 2.54 1.79 10.08
CompWin 3.36 3.54 12.91 1.61 0.45 7.87 1.67 2.18 13.24 0.33 3.94

Table 3. Results for stereo

(www.middlebury.edu/stereo ). The disparity map
obtained using a11×11 window is shown in Figure 1 along
with the ground truth disparity map. Typical running time
for window size11 is a few minutes on a Pentium 1.7 Ghz
machine.

5. Conclusion

By observing that there are usually no more than two dis-
parity levels in a small neighborhood of individual pixels,
we have presented a graph cut based algorithm for com-
bining window-based local stereo into a global optimiza-
tion framework. For local bi-labeling, the graph cut method
is applied to find the best score of all possible disparity
pairs. The optimal solution is used in the global optimiza-
tion to compute the compatibility of disparity values be-
tween neighboring pixels. Instead of the smoothing energy
term usually used in MRF, the bi-labeling is used to sup-
port the final disparity map that agrees with the local bi-
labeling results, thereby preserving the disparity disconti-
nuities. We have applied our algorithm on several stereo
data sets and have presented quantitative evaluation of our
method with several others. Experiments on real data in-
dicate that our results are comparable to other pixel-based
as well as window-based stereo methods. Our approach of
combining window based local stereo into a global opti-
mization framework using graph cuts fits in well with other
schemes and takes a step towards completing the matrix of
stereo algorithms.

Some of the key areas of future work are

1. Computational speedup: As discussed in Section 2.5,
for computational speedup, instead of computing the
bi-labelling for windows around all the individual pix-
els, the bi-labeling need only be computed on the entire
image. However, for large number of disparities, even
this can be computationally prohibitive. We can usu-
ally limit the disparities that can be assigned to each
pixel based on the error of assigning that disparity to
the pixel. And therefore, we only have to try those pairs
of disparities that can be assigned to a particular pixel.

Another approach that can be applied is to find all the
disparities assigned to a pixel by varying the smooth-
ness parameter of a global algorithm and then we can
choose the pairs of disparities that can be assigned to
each pixel from these assignments.

2. Selection of window size: Our paper considers fixed
size windows. For this scenario, the appropriate size of
the window to be used plays a very important role. Au-
tomatic selection of the window size to be used for a
given stereo pair is an important area of future work. In
addition, it is easy to see that no fixed window size will
work well for all areas of the image. In particular, our
local window based stereo algorithm relies on the as-
sumption that local windows have at most two dispar-
ities, which will fail for large sizes of window. There-
fore, ideally, we would like to automatically select the
window size at each pixel. Incorporation of variable
window size is likely to increase the performance of
our algorithm.

3. Generalizing bi-labelled local stereo: Our local win-
dow based stereo is based on the assumption that the
window is bi-labelled. Although this assumption is
valid for most of the image (provided the window size
is small), still it is not general enough and needs to be
generalized.

4. Incorporating occlusion & uniqueness constraint: Our
global optimization framework does not currently han-
dle the uniqueness constraint in the right image. Kolo-
mogorov and Zabih [15] have incorporated this con-
straint using a different graph construction. It is easy
to incorporate this method of graph construction in our
global minimization framework. This, we believe, will
lead to further improvements.
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Figure 1. The results of applying our algorithm to different data sets for a 11× 11 window size.


