WEIGHTED ABDUCTION FOR PLAN ASCRPTION

Prepared by:
Douglas E. Appelt
Sr. Computer Scientist

Martha E. Pollack
Computer Scientist

Artificial Intelligence Center
Computing and Engineering Sciences Division
and
Center for the Study of Language and Information
Stanford University

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This work was supported by a contract with the Nippon Telegraph and Telephone Corporation, and by a gift from the System Development Foundation.
Weighted Abduction for Plan Ascription

Douglas E. Appelt and Martha E. Pollack
Artificial Intelligence Center
and
Center for the Study of Language and Information
SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025 USA

Abstract

We describe an approach to abductive reasoning called weighted abduction, which uses inference weights to compare competing explanations for observed behavior. We present an algorithm for computing a weighted-abductive explanation, and sketch a model-theoretic semantics for weighted abduction. We argue that this approach is well suited to problems of reasoning about mental state. In particular, we show how the model of plan ascription developed by Konolige and Pollack can be recast in the framework of weighted abduction, and we discuss the potential advantages and disadvantages of this encoding.

Keywords: Plan recognition, Plan evaluation, Mental-state ascription, Abduction, Evaluation metrics

6This work was supported by a contract with the Nippon Telegraph and Telephone Corporation, and by a gift from the System Development Foundation. Our thanks to Kurt Konolige for valuable discussions on the research reported here.
1 Introduction

It is now widely accepted that cooperative interaction depends upon agents reasoning about one another's mental states. The process of "modeling the user" of an interactive system consists, in large part, in ascribing to the user a coherent set of beliefs, intentions, and possibly other mental attitudes that account for, or explain, his or her observed actions. Indeed, cooperative interaction depends not just on ascribing any set of explanatory mental attitudes, but rather on ascribing a mental state that in some sense provides the best explanation. Thus, a central concern in plan recognition and evaluation is to provide a precise specification of what counts as the best plan ascription to make, given some observed actions.\(^1\)

Unfortunately, much of the existing work on plan ascription [All83, Car88, LA90, Pol90, Sid85] has failed to provide such a specification. As Kautz points out, in this work, "[o]nly a space of possible inferences is outlined, and little or nothing is said about why one should infer one conclusion over another, or what one should conclude if the situation is truly ambiguous" [Kau90, p. 106]. Kautz himself addresses this issue, providing an elegant formalization of plan recognition stated in terms of circumscription, in which it is made clear precisely which plan ascriptions should be preferred in a given situation. However, his account relies upon strong assumptions:

\(^1\)We distinguish between plan recognition, in which the observer must determine the actor's goal as well as his plan, and plan evaluation, in which the observer is given the actor's goal. As we shall later show, the distinction between these problems, although subtle, influences their treatment in an abductive approach. We use the term plan ascription to refer to the general process that subsumes plan recognition and evaluation.
that the agent performing the plan recognition (the observer) has complete
knowledge of the domain, and that the agent whose plan is being inferred
(the actor) has a correct plan. Pollack, in research on plan ascription in
discourse understanding, has shown that these assumptions are too strong
for any realistic, useful model of the process [Pol86, Pol90].

It is not obvious how to remove the strong assumptions from Kautz's
model. Consequently, Konolige and Pollack [KP89] (hereafter KP) have
attempted to provide a model of plan ascription that allows one to make ex-

cplicit assertions about preferred ascriptions, while avoiding the overly strong
assumptions inherent in Kautz's framework.

In this paper, we use KP's model as a starting point. However, where
they employed an argumentation system for making inferences, we instead
take an abductive approach. We do this because we believe that abduction
will ultimately prove to be more efficient computationally than a direct
implementation of an argumentation system.

Abduction is the process of reasoning from some observations to the best
explanation for them. Various formalisms for abductive reasoning have been
proposed in the recent AI literature [Lev89, Poo89a, Reg83]. In this paper,
we focus on a particular kind of abduction, weighted abduction, and explore
its application to the problem of reasoning about an agent's mental state.

Weighted abduction involves the use of inference weights to compare com-

footnote{Kautz suggests the introduction of an "error" plan that will be inferred whenever one
of the assumptions is violated. But, in general, this is insufficient, since agents need to be
able not only to reason that a plan is incorrect, but also to reason about what makes it
so.}
pleting explanations; a central theme of this paper is the use of this weighting mechanism in selecting the mental state that best explains a user's observed actions. More specifically, we show how KP's model of plan ascription can be recast in the framework of weighted abduction, and discuss the potential advantages and disadvantages of this encoding. First, however, we describe abduction in general, and weighted abduction in particular.

2 Approaches to Abduction

The concept of abductive reasoning dates back almost a century to the work of the philosopher C. S. Pierce [Pie58]. The abduction task can be described as follows: given some proposition \(\phi \), explain \(\phi \) by finding a set of additional propositions that, along with background knowledge, account for \(\phi \). To put this somewhat more formally: given a theory \(T \) and a proposition \(\phi \), compute a set of consistent assumptions \(A \), such that \(T \cup A \models \phi \).

Many AI uses of abductive reasoning have involved diagnosis problems, and thus have treated abduction as a type of causal reasoning, requiring the elements of the assumption set \(A \) to be causally related to the \(\phi \). However, the general characterization just given dispenses with this requirement. This is important, because a causality assumption is often not appropriate to the task of mental-state ascription. For example, a system performing plan recognition may decide that the user believes some proposition \(P \) simply because the system itself believes \(P \), even though there may be no direct causal connection between the system's belief and the user's.

Typically, a number of different sets of propositions may play the role of
the assumption set \(A \). For example, if \(\{ P \} \) is an assumption set for a given abduction problem, then so is \(\{ P \wedge Q \} \), where \(Q \) is any proposition that is consistent both with \(P \) and with the theory \(T \). More generally, whenever some abductive assumption set contains \(P \), alternative assumption sets containing \(P \wedge Q \) can also be constructed, subject again to the consistency constraint. Most abductive reasoning systems have incorporated some sort of "Occam's Razor" principle to reject the latter assumption sets in favor of the former. It would be nice if such a criterion could be formulated on strictly semantic grounds, ignoring any syntactic details about how the propositions \(P \) and \(Q \) are represented in the theory. However, Levesque has shown that this is impossible in general [Lev89]. Nevertheless, it is quite desirable that the evaluation criterion be as independent of syntactic details as possible.

The evaluation of assumption alternatives turns out to be one of the central problems of abduction—just as the evaluation of alternative explanations for an observed action is one of the central problems of plan ascription. Proposals about how to evaluate competing sets of abductive assumptions have tended to fall into two classes: those that involve a global criterion, against which an assumption set as a whole can be evaluated, and those that involve local criteria, in which individual rules in the theory are assigned evaluative metrics. We consider each approach in turn, and comment on their usefulness to problems of reasoning about mental state.
2.1 Global Criteria

Probably the simplest evaluative criteria for abductive systems are cardinality comparisons, which were first introduced for use in diagnosis applications. In these applications, one views a system as being composed of a number of components, and specifies a base theory that describes the intended input/output behavior of the system. The diagnosis problem in this setting involves reasoning from observations of the system’s erroneous behavior to a set of assumptions about which components are faulty: the assumption set should identify components whose individual failures, taken together, would explain the observed behavior of the system [Rei87]. This specification of the problem leads to a clear evaluation criterion: one should accept the assumptions that imply the failure of the smallest number of components. Although this criterion may be useful in diagnostic tasks—medical as well as mechanical—it is more difficult to apply in tasks such as mental-state ascription that lack enumerable underlying entities. One might, for example, attempt to count the number of “facts” assumed, where a “fact” is some minimal syntactic unit such as a literal, but this measure is extremely sensitive to the particular syntactic details of the theory, and very likely to lead to unintended results [NM89].

Poole suggests an alternative to the cardinality criterion, under which one prefers the least presumptive explanation [Poo89a]. Given a set of alternative assumption sets \(A_1, \ldots, A_n \) that are solutions to the abduction problem \(T \cup A \models \phi \), assumption set \(A_i \) is less presumptive than assumption set \(A_j \) if \(T \cup A_j \models A_i \). This corresponds rather directly to what Stickel refers
to as *least specific abduction* [Sti88a]. Stickel argues that least specific abduction is a good evaluation criterion for certain types of natural-language interpretation tasks. For example, in ordinary discourse, if a speaker says "My car won't start," it is likely that what the speaker intends the hearer to believe is that the speaker believes that the car won't start—and thus the speaker also intends the hearer to believe that the car won't start. It is less likely that the speaker intends for the hearer to believe that either the speaker believes the battery is dead or the starter solenoid is defective or any of a multitude of other facts that would account for the car's failure to start. The least specific abduction is, in this case, the most appropriate one.

On the other hand, least specific abduction is not an appropriate strategy for diagnosis tasks: if a diagnostic system were given the task of determining why some car won't start, it would need to entertain each of the possible causes for the problem and judge their relative plausibility. Here, the *most specific* assumption set that can be derived should be accepted.³

Tasks involving reasoning about mental state, such as plan ascription, incorporate aspects of both least specific and most specific abduction. As Quilici et al. point out, an observed action can sometimes be explained by a range of equally likely underlying beliefs [QDF88]. In this case, a cooperative plan recognition system need not entertain the entire set of alternatives, and attempt to reason further from that entire set; instead it should ascribe only the single, less specific belief that can be strongly supported by the

³We naturally assume that the definition of an assumption set incorporates some minimality criterion that rules out assumptions that are irrelevant in the sense that they play no role in concluding the observation.
evidence. In fact, this is the insight inherent in several strategies that have been proposed to control plan recognition, such as Allen's forking heuristic [All83] and Sidner's single-branch strategy [Sid85]. The single-branch strategy, for instance, applies when a plan-recognition system reaches a point at which it has assumed that the actor intends to perform some action \(\alpha \), and then determines that \(\alpha \) may be part of several, presumably equally likely plans, say \(P_1, P_2 \) and \(P_3 \); the strategy specifies that in this situation the system need not reason about the whole set of alternatives, but instead should ascribe an intention to perform \(\alpha \), and wait to see whether further information is provided that disambiguates among the \(P \)'s.

While certain parts of plan ascription thus require a least specific abduction strategy, there are other parts for which such a strategy will be invalid. For example, suppose that in some circumstance, an observed action \(\alpha \) is most likely to be a part of a particular plan \(P_1 \), which in turn is most likely to be a subplan of some \(P_2 \). As a concrete illustration, let \(\alpha \) be the action of getting one's keys out, performed in the circumstances in which the actor is standing in front of her front door, and let \(P_1 \) be the intention to unlock the door, and \(P_2 \) be the intention to enter the house. \(P_2 \) provides a better explanation of the observed action than does \(P_1 \), even though \(P_1 \) is a less specific assumption, in the sense that (by hypothesis) entering the house entails unlocking the door.

Neither a most specific nor a least specific abduction strategy is thus completely appropriate for plan ascription: some combination of the two seems to be necessary. In addition, least specific abduction has a further
technical problem that must be handled: because there may be several least specific assumption alternatives for a given abduction problem, the issue of choosing the best one still remains. Poole describes an abduction evaluation strategy, called minimal abnormality [Poo89b], which applies to abduction problems for which some of the rules in the base theory T are stated in terms of abnormality predicates. Under this strategy, assumption set E_i is preferred to E_j if E_i makes fewer abnormality assumptions than E_j, or if it makes the same abnormality assumptions and fewer normality assumptions than E_j. One advantage of minimal abnormality is that, in some cases at least, it provides a means of distinguishing among multiple least specific assumption sets. However, it suffers from a serious problem of its own. Because it is provable that any explanation for an observation is logically consistent with some least specific explanation, it follows that, provided one uses the same criteria in choosing amongst least specific explanations as in ranking all explanations, the chosen one will not be inconsistent with the best explanation, whatever that might be. Unfortunately, this is not the case for minimal abnormality: there may exist explanations that are not logically consistent with any minimal abnormality explanation, and therefore the minimally abnormal explanation may be inconsistent with the best explanation.

2.2 Local Criteria

The alternative to global criteria for comparing competing assumption sets in abductive reasoning is to associate evaluative metrics with individual
rules in the base theory T and then evaluate each assumption set A by combining the weights of the rules used to derive the members of the set. In this approach, one effectively associates each assumption with information about the likelihood that it is true. Unlike global criteria, which are generally domain independent, a localized approach allows one to incorporate domain-specific details about the likelihood that particular propositions are true.

Bayesian statistical methods provide the most rigorous means of incorporating information about likelihood in a theory. To apply Bayesian methods to an abduction problem, one must first completely delimit the space of possible assumptions. Then each assumption must be assigned an \textit{a priori} probability, and the conditional probabilities of consequences, given particular assumptions, must be determined. The abduction problem then is simply to use Bayes's Rule to compute the probability of the various assumptions being true, given the observation to be explained, and ultimately to accept the most probable combination of assumptions that jointly explain the observations. The statistical approach to abduction has been extensively used in systems for medical diagnosis [Pop82], and its use is being investigated in systems for natural-language understanding [CG88] and plan recognition [Ca90]. The principal disadvantage of the statistical approach is that it requires one to derive an exhaustive partitioning of the assumption space into independent alternatives. Although this requirement may be surmountable in diagnostic tasks, in which the space of hypotheses can be clearly delimited and in which independence conditions make sense, it presents a serious burden to problems involving mental-state ascription,
in which the range of alternatives and their independence seem much more difficult to establish.

As an alternative to statistical methods, we propose an approach to abduction based on model preferences. In this approach, the process of making an assumption during abductive reasoning is viewed as restricting the models of the background theory T. We encode an underlying preference ordering on the set of the models of T, using annotations on the rules of the theory. These annotations are expressed as numeric weights—hence the named weighted abduction. In weighted abduction, one abduction set, A_1, is better than an alternative, A_2, if A_1 restricts the models of T to a more highly valued subset than does A_2. Thus an optimal assumption set is taken to be the one that restricts the models of T to a more highly valued subset than does any competing assumption set.

A major advantage of weighted abduction is its flexibility. As we shall see, using weighted abduction, one can express not only domain-specific information about the likelihood that any particular proposition is true, but also preferences for most specific (diagnostic-type) explanations and for least specific explanations in situations in which either of these approaches is warranted. In other words, within a single theory, one can state the domain-specific conditions that would lead one to prefer either a most specific or a least specific explanation.
3 Weighted Abduction

We now turn to a more detailed description of weighted abduction. The algorithm for weighted abduction was introduced by Stickel, but without any theoretical analysis [Sti88a]. In weighted abduction, the background theory \mathcal{T} consists of a set of literals (facts) and a set of rules of the following form:

$$p_1^{w_1} \land \ldots \land p_n^{w_n} \supset q.$$

Each rule is expressed as an implication with a single consequent literal q, and a conjunction of antecedent literals p_i, each associated with a weighting factor w_i. The proposition to be explained, ϕ, is expressed as a conjunction of literals, each of which is associated with an assumption cost.

Given a goal of proving some proposition ϕ, a weighted-abductive theorem prover can either assume ϕ at its assumption cost, or it can find a rule whose consequent unifies with ϕ and attempt to prove the antecedent literals. The assumption cost of each subgoal—that is, each proof of an antecedent literal p_i—is computed by multiplying the assumption cost of the goal by w_i, the weighting factor associated with p_i. For example, given the rule above, if the assumption cost of q is w_q, then the assumption cost of p_3 is $w_q \cdot w_3$. Each antecedent literal can either be (1) assumed at its computed assumption cost, (2) unified with a fact in the knowledge base (a "zero cost proof"), (3) unified with a literal that has already been assumed—the algorithm only charges once for each assumption instance, or (4) proved via the use of another rule. The best solution to the abduction problem is given by the set of assumptions that lead to the lowest cost proof.
A solution to an abduction problem is admissible only when all the assumptions made are consistent with each other and with the initial theory. Therefore, a correct algorithm must filter out potential solutions that rely on inconsistent assumptions. Another possibility that must be accounted for is that in the frequent case in which the goal proposition \(\phi \) and its negation are both consistent with the theory, it will be possible to prove both \(\phi \) and \(\neg \phi \) abductively—in the worst case by assuming them both outright. The abduction algorithm thus must guarantee that it is impossible to defeat a proof by proving the negation of any of its assumptions at a cost that is cheaper than the cost of the proof itself.

The complete abduction algorithm can be described as follows:

Main Procedure:

Given a base theory \(T \) and a goal \(\phi \)

Set \(\text{Solution} = \text{none} \);

Generate all candidate assumption sets, \(\text{Cands} \);

Sort the members of \(\text{Cands} \) in order of increasing cost;

While \(\text{Solution} = \text{none} \) and \(\text{Cands} \neq \text{nil} \)

Set \(A = \text{first member of Cands} \);

Set \(\text{Cands} = \text{rest of Cands} \);

If Admissible(\(A \)) \{Use subroutine below.\}

Then Set \(\text{Solution} = A \)

4 An initial implementation of the abduction algorithm used in the TACITUS text-understanding system [HSME88] employed only a taxonomic hierarchy check to ensure consistency, which, although incomplete, is at least easily computable. Of course, the general question of consistency is undecidable.
EndIf

endWhile;

Return Solution.

Subroutine for Determining Admissibility:

Given an assumption set \(A = \{\psi_1, \ldots, \psi_m\} \)

Set Admissible = true;

Set \(i = 1; \)

While \(i \leq m \) and Admissible = true

Attempt to prove \(\neg \psi_i \), given assumptions \(\psi_1, \ldots, \psi_{i-1}, \psi_{i+1}, \ldots, \psi_m \);

If \(\neg \psi_i \) is provable with no assumptions

Then Set Admissible = false \{A is inconsistent\}

EndIf;

If \(\neg \psi_i \) is provable by making additional assumptions

Then If the best proof costs more than the cost of A

Then Set Admissible = false \{A is defeated\}

EndIf;

EndIf;

EndIf:

Set \(i = i + 1 \)

EndWhile;

Return Admissible.

It is possible to express different abduction strategies through the selection of suitable weighting factors. Consider the schematic abduction rule

\[p^a \land q^b \supset r. \]

If \(a + b < 1 \), the rule will favor the assumption of \(p \) and
q as explanations for r. If $1 \leq \alpha + \beta < 2$, then both p and q cannot be simultaneously assumed to prove r. However if either p or q can be derived at zero, or very low, cost, then the other literal can be assumed to prove r. In this case, p provides the evidence one needs to assume q.

3.1 A Model-Theoretic Interpretation

We can sketch a semantics for weighted abduction that is based on model preference. A complete discussion of the semantics of weighted abduction would be beyond the scope of this paper, but is part of our ongoing research.

The central idea is inspired by the model preference default logics of Selman and Kautz [SK89]. If T is a base theory to be used in weighted abduction problems, we assume that there is an underlying partial preference order on the models of T. The weights on the rules in T are interpreted as expressing implicit constraints on this preference order. For example, consider a rule $p^\alpha \Rightarrow q$, which is satisfied in any model that satisfies q. If $\alpha < 1$, this suggests that those models that satisfy p and so in which the truth of q is in some sense “explained,” are preferred to those models satisfying q but not p. It is too restrictive to interpret the rule as expressing the preference “every model that satisfies $p \land q$ is preferred to every model that satisfies $\neg p \land q$.” In many practical situations, this preference is impossible to satisfy. The proper interpretation of the rule is “every model that satisfies $p \land q$ is preferred to some model satisfying $\neg p \land q$.”

Rules with multiple propositions in the antecedent can be interpreted
similarly. Consider the rule

\[p^\alpha \land q^\beta \supset r. \]

According to the abduction algorithm, if \(\alpha + \beta < 1 \), this would imply that it is always preferable to assume \(p \land q \) than to assume \(r \). In terms of the model preference interpretation, that means that any model that satisfies \(p \land q \land r \) is preferred to some model that satisfies the consequent and any combination of the antecedent literals in which at least one of them is negated, that is, \(\neg p \land q \land r \), or \(\neg p \land \neg q \land r \), or \(\neg p \land \neg q \land \neg r \). If \(\alpha + \beta \geq 1 \), then one of these possibilities is eliminated: there may be a model satisfying \(\neg p \land \neg q \land r \) that is preferred to every model satisfying \(p \land q \land r \). The weighted abduction algorithm, by introducing assumptions, restricts the models of \(T \) by ruling out those models that are demonstrably inferior according to the model preference constraints. Given some abduction problem with background theory \(T \) and goal proposition \(\phi \), let \(A \) be best set of assumptions such that \(T \cup A \models \phi \). If \(A' \) is another set of assumptions such that \(T \cup A' \models \phi \), then every model that satisfies \(T \cup A \) is preferred to some model that satisfies \(T \cup A' \).

When axiomatizing a domain using weighted abduction, some care must be taken to ensure that the chosen rule weightings actually imply a consistent model preference ordering, that is, one without cycles.
4 Application to Plan Ascription

Having sketched the theory of weighted abduction, we now show how it can be applied to the problem of plan ascription. We begin by briefly reviewing KP's model [KP89], and then recast that model using a weighted abduction approach.

4.1 A Model of Plan Ascription

In KP's model of plan ascription, like many of the earlier ones, the process of plan ascription consists in ascribing to an agent a set of beliefs and intentions—a plan—that explains an action or actions that the agent is observed to perform. The "building blocks" that KP employ to define this process are predicates that describe [aspects of] an agent's mental state, as well as plan fragments:

Mental State

INT(a, α): agent a intends α

BEL(a, p): agent a believes p

ACH(a, p): agent a believes p will become true as a consequence of the actions he performs

EXP(a, p): BEL(a, p) ∨ ACH(a, p)

Plan Fragments

TO(a, p): the plan consisting of doing α to make p true
BY(α, β, p): the plan consisting of doing β by doing α, while p is true (p “enables” the relation)

Details of the representation language can be found in KP’s paper. Here we rely largely on the reader’s intuitions about their intended meanings.

In KP’s model, the observer ascribes plan fragments to the actor until a globally coherent plan that can account for all his observed actions is found. The ascription process is controlled by a direct argumentation system, ARGH [Kon88]. ARGH is a formal system, in the sense that its elements are formal objects, and the processes that manipulate them could be implemented on a computer. It is similar in many respects to so-called justification-based Truth Maintenance Systems [Doy79], but differs in the diversity of argumentation allowed, and the fact that arguments for a proposition and its negation may coexist without contradiction. It also differs from formal nonmonotonic logic approaches, such as circumscription or default logic, in that it makes arguments the direct subject matter of the system. Finally, it differs from other direct argumentation systems in that it has an explicit notion of argument support independent of belief, and allows a flexible specification of domain-dependent conditions for adjudicating among arguments.

The purpose of argumentation is to formulate connections between propositions, so that an agent can come to plausible conclusions based on initial data. Formally, an argument is a relation between a set of propositions (the premises of the argument), and another set of propositions (the conclusion of the argument). Using ARGH, one can state support relations
between premises of an argument and conclusions, and one can also state
defeat rules, which express the relative strengths of potentially conflicting
arguments. Defeat is what makes arguments defeasible, and is one of the
most complicated and interesting parts of defining a domain. When we re-
cast the ARGH framework using weighted abduction, the defeat principles
are captured using the weighting mechanism.

The most important rules in KP’s plan recognition scheme are those that
are used to ascribe plan fragments, such as the following example:

\[
\text{BEL}(a, \text{TO}(\alpha, p)), \text{INT}(a, \alpha), \text{ACH}(a, p) \quad \text{to}
\]

\[
\text{INT}(a, \text{TO}(\alpha, p))
\]

This rule (actually, rule schema) says that, if an agent \(a\) believes that \(p\) is
an effect of performing \(\alpha\), and he intends to do \(\alpha\) and to achieve \(p\), then it
is plausible that his reason for doing \(\alpha\) is to achieve \(p\). A similar rule is used
to coalesce fragments involving the \(BY\) relation:

\[
\text{BEL}(a, \text{BY}(\alpha, \beta, p)), \text{INT}(a, \alpha), \text{INT}(a, \beta), \text{EXP}(a, p) \quad \text{by}
\]

\[
\text{INT}(a, \text{BY}(\alpha, \beta, p))
\]

Additional rules, which we shall not repeat here, extend ascribed plan frag-
ments; an example of such a rule states that if an agent believes that \(p\) is an
effect of performing \(\alpha\), and he intends to do \(\alpha\), then he both intends to do
\(\alpha\) in order to make \(p\) true (that is, he intends the \(\text{TO}\) fragment) and plans
to achieve \(p\). Such rules correspond closely to the classical plan-recognition
rules in a system such as Allen’s [All83].

As noted earlier, the second important set of rules in the system are the
defeat rules, which express the relative strength of arguments. One example
is *Purposeful Action Defeat*. This rule encodes the presumption that agents engage in purposeful actions: they do not typically intend actions whose effects they already believe to be true. In the ARGH system, this rule is stated as follows:

Purposeful Action Defeat If \(\frac{Ach(a,p)}{x \, to} \) is an argument whose premises \(x \) are supported, and so is \(\frac{Bel(a,p)}{y \, belasc} \), then the belief ascription argument (the one labeled belasc) is defeated.

To understand *Purposeful Action Defeat*, assume that there is an argument that supports the conclusion that the agent intends to perform some action to bring about \(p \); this argument makes use of the to rule schema presented above. Assume further that there is another argument that supports the conclusion that the agent believes that \(p \) will hold independent of his actions, and that this argument is based only on the reasoner’s own beliefs that \(p \) will hold. Although we have not provided the belief transfer rule here, it is captured in KP’s system by a belasc rule. *Purposeful Action Defeat* specifies that the former argument, the one using the to rule, defeats the latter argument, the one using belasc. Note that *Purposeful Action Defeat* applies only to arguments in a belief that \(p \) is attributed on the basis of simple belief ascription: the observer believes \(p \) and therefore it’s plausible that the actor does, too. This is the only kind of ascription countenanced by belasc. There may well be additional, stronger evidence that the observer believes \(p \), in which case arguments using that evidence—by means of other ascription rules—can defeat the argument using the to rule.
Below, we shall consider some other defeat rules introduced by KP, illustrating their use in an example. First, however, we consider how the argumentation-system approach can be recast using weighted abduction.

4.2 Applying Weighted Abduction

Our task is to convert both the support rules and the defeat rules into the weighted abduction scheme. Conversion of the support rules is straightforward. For each support rule, we simply conjoin all the propositions of the left-hand side, that is, the premises, into a single conjunctive proposition, and then form a rule in which the conjunction entails the right-hand side, that is, the conclusion, of the support relation. For example, the to rule schema above becomes:

\[\forall a, \alpha, p \text{BEL}(a, \text{TO}(\alpha, p)), \text{INT}(a, \alpha), \text{ACH}(a, p) \supset \text{INT}(a, \text{TO}(\alpha, p)) \]

Before adding this rule to the background theory, we must assign appropriate weighting factors to it. To determine the weighting factors, we consider the relationship between this rule and other rules in the system that might lead to conflicting results.

To illustrate this process of assigning weights, consider the Purposeful Action Defeat. In the weighted abduction framework, what we do is to assign a lower weighing factor to the premise of the abduction rule that is derived from the to rule, than to the premise of the rule that is derived from the belausc rule. This will guarantee that abductive inferences using the former rule will be preferred to those using the latter.
Most of the potential defeat rules can be handled in this fashion, by assigning appropriate weightings. However, two of the defeat rules given by KP are in fact handled directly by the weighted abduction system. *Initial Fact Defeat* states that an initially known fact defeats any argument supporting a conflicting proposition; this is handled directly by the abduction system's requirement that the assumption set be consistent. Of course, for this to work, conflicting propositions must be properly defined. Thus, for example, KP specify that $BEL(a, p)$ and $ACI(a, p)$ conflict—because one cannot believe both that a particular proposition will be made true by some action he intends to perform and that it will also be true independent of his actions. These propositions must thus be defined to be logically inconsistent in the base theory of the abductive system.

A second defeat rule, *Conflicting Action Defeat*, handles cases in which there are arguments leading to conclusions for two intentions, to do two different actions at the same time, each of which has the same effect. *Conflicting Action Defeat* states that in such cases, if the support set of one of the intentions is a proper superset of the support set of the other, then the argument for the former defeats the argument for the latter. In ARGH, a support set of a proposition p consists of those initial facts that are used in some argument chain that supports p. Conflicting action defeat captures the intuition that, when there are competing alternative actions and one of them is part of a coherent set of ascribed plan fragments while the other is not, we prefer to ascribe an intention to do the former. In the abductive model, this corresponds to the assumption set for the former proposition being a
proper subset of the assumption set for the latter; because we do not permit negative weights, it follows from this that the weight of the former set will be less than the weight of the latter set. Thus, the former assumption set will be preferred.

4.3 Example

In this section, we provide a brief example that illustrates the application of weighted abduction to plan ascription. As we noted earlier, we distinguish between two closely related types of plan ascription problems: plan recognition and plan evaluation. They differ in the type of information that is given as part of the problem statement, and the type of information that is sought as a solution. In plan recognition, the information provided is a set of one or more observed actions; the task is to find some plan that explains those actions. In plan evaluation, the given information also includes a statement of the actor’s goal; the task then is to find some plan that relates the observed actions to the known goal. As we shall see, in an abductive approach, this difference has an important influence on the specification of the three problem components: the base theory, T, the goal proposition ϕ, and the assumption set A.

We first consider plan recognition. In an abductive statement of a plan recognition problem, the base theory T contains the observer’s existing beliefs about the actor’s mental state, along with general beliefs about the domain. The goal proposition ϕ consists of the conjunction of intentions to perform each of the observed actions. (A more complete statement of
the problem might also require an inference from each observation of an action to an assumption that it was intentional; however, we simplify our discussion by presuming that this default inference is automatic. Similarly, when we consider intentions that are described in a discourse, we assume an automatic inference from the description to the intention itself.) Given this much, a solution to the problem is an assumption set A that ascribes a plan to the actor, such that the intentions of φ are entailed by A and T together. Notice that the plan ascribed is a mental state, that is, it typically consists of some set of beliefs and intentions satisfying various coherence constraints that are defined in the theory.

In plan evaluation, the actor's goal is also known to the observer. It seems natural to formalize plan evaluation in a similar manner to plan recognition: the only difference would be that in the case of plan evaluation there is an additional proposition to be conjoined in φ, namely, an intention to perform the given goal. Unfortunately, this treatment does not sufficiently constrain the problem. In particular, it does not require the observed actions to be seen as intended components of a plan to achieve the given goal. Consider a situation in which the observed action is α, and the given goal is P'. The actor, unbeknownst to the observer, erroneously believes that doing α brings about P. If, however, α actually brings about Q, a solution to the problem as stated could account for α as a way of achieving Q, and account for P independently. There is nothing that forces the consideration of P as

Examination of natural-language discourse has shown that speakers often tell their hearers what their goals are, presumably to facilitate the plan ascription process [Pol86]. Thus, plan evaluation is a natural problem to study.
the goal towards which α is aimed.

To avoid this problem, we adopt a different encoding of the plan evaluation problem, in which the intentions to perform the observed actions are taken to be part of the base theory T, and the known goal of the actor is defined to be ϕ. Then the inference rules in T that are used to generate the members of candidate assumption sets A can take into account the intended actions and relate them to the known goal. In the example described in the previous paragraph, a base rule can be used that relates intended actions with the effects that the actor believes they have. This will lead to an ascription both of the erroneous belief (that α leads to P) and of the consequently ill-fated intention (to perform α as a way of bringing about P). In general, assumptions that are generated using rules that rely on the agent’s intentions will be highly valued.

We illustrate these ideas with a simple plan evaluation problem, derived from [KP89], in which a robot, Flakey, is asked by another agent, Harry, to get some particular report for itself (Flakey). This might come about through a request like, “I want you to get the report, so you will have it,” in which the intended referent for “the report” is easily recoverable. This request might sensibly be made with the ultimate intention of getting Flakey to deliver the report to a third party, but that will not concern us here. Assume that, unbeknownst to Harry, Flakey already has the report. What can Flakey conclude about Harry’s mental state from this request? We shall set up this problem by specifying a fragment of a base theory, from which we will attempt to abduce that Harry intends that Flakey get the
report, believing that this will bring it about that Flakey has the report.

According to the discussion above, the base theory contains initial facts
about the domain, including Harry’s described intentions. These facts are
expressed by axioms (1) through (3):

\[\forall x, y \text{To(}x, y\text{), Has}(x, y) \] \hspace{1cm} (1)

\[\text{Has(Flakey, Report)} \] \hspace{1cm} (2)

\[\text{INT(Harry, Get(Flakey, Report))} \] \hspace{1cm} (3)

Axiom (1) represents Flakey’s belief that the result of getting an object is
having it. Axiom (2) represents Flakey’s belief that it already has the report,
and Axiom (3) represents the initial observation about Harry’s intention, as
expressed by his request.

Recall from Section 4.1 that we also need an axiom to represent the
inconsistency of BEL and ACH:

\[\forall a \text{ BEL}(a, P) \supset \neg \text{ACH}(a, P) \] \hspace{1cm} (4)

The following two axioms provide a very simple theory of belief ascrip-
tion. We assume one agent can ascribe certain beliefs to another agent, and
can therefore reason about what the latter agent can conclude; we further
assume that an agent can use its own beliefs as a model to fill gaps where
direct information about the other agent’s beliefs is incomplete.
\(\forall a \, P \land \text{Common}(a, P) \land \text{Shared}(a, P)^{0.1} \supset \text{BEL}(a, P) \) (5)

\(\forall a \, P \land \text{Private}(a, P) \land \text{Shared}(a, P)^{0.9} \supset \text{BEL}(a, P) \) (6)

\(\forall a, \alpha \, \text{Common}(a, \text{To}(a, P)) \) (7)

\(\forall a, x, y \, \text{Private}(a, \text{has}(x, y)) \) (8)

\(\forall a \, \text{Common}(a, P) \equiv \neg \text{Private}(a, Q) \) (9)

Axiom (5) states if Flakey believes a proposition, which, moreover, is thought to be common, then it can be concluded that the actor also believes that proposition. Indeed, precisely because the proposition is thought to be common, it is quite likely that other agents believe it; this is reflected in the rather low assumption weight (0.1) associated with the “Shared” predicate. Axiom (6) is similar to Axiom (5), except that it applies to beliefs that are thought to be private, because such beliefs are less likely to be shared, the associated assumption weight (0.9) is much higher. Axioms (7) and (8) specify certain propositions as being common or private: Flakey believes that everyone with whom it interacts knows about the effects of domain actions, but Flakey does not believe that everyone knows what objects everyone else has. Axiom (9) specifies that no propositions are thought to be both private and common: these are incompatible predicates.
Finally, we need the following axiom, which restates the first plan-
asscription rule described in Section 4.1.

\[
\forall a, \alpha \; \text{BEL}(a, To(\alpha, P))^{0.9} \land \text{INT}(u, \alpha)^{0.5} \land \text{ACH}(\alpha, P)^{0.5} \supset \text{INT}(u, To(\alpha, P))
\]

(10)

Axiom (10) captures the relationship between an intention to achieve \(P \) by doing \(\alpha \), on the one hand, and the belief that \(\alpha \) brings about \(P \), the intention to do \(\alpha \), and the intention to achieve \(P \), on the other. The high assumption weight associated with the BEL predicate reflects the implausibility of the actor's doing \(\alpha \) to achieve \(P \) without believing that \(\alpha \) achieves \(P' \). The weights on the INT and ACH literals reflect the intuition that evidence is required for the existence of the relevant goals and intentions—while it may be reasonable to assume one or the other, both of them will not be assumed.

In the current example, Flakey is told that Harry wants to perform the get action in order to bring it about that it has the report. Following the procedure outlined for plan evaluation, we thus need to abduce

\[
\text{INT}(\text{Harry}, \text{To(\text{Get(Flakey, Report)}, \text{Has(Flakey, Report)})})
\]

given the set of axioms listed above. We assign an arbitrary initial assumption cost of 100 to the goal to be proved.

Axiom (10) unifies with the goal proposition, and leads to three subgoals:

\[
\text{BEL}(\text{Harry}, \text{To(\text{Get(Flakey, Report)}, \text{Has(Flakey, Report)})}) \text{ assumable at cost 90}
\]

\[
\text{INT}(\text{Harry}, \text{Get(Flakey, Report)}) \text{ assumable at cost 50}
\]
ACH(Harry, Has(Flakey, Report)) assumable at cost 50

The INT subgoal matches Axiom (3) directly, so it is proved and thus need not be assumed. The ACH subgoal does not match any axioms in our limited set, and therefore must be assumed at a cost of 50 (that is, 100, the assumption cost of the goal proposition, times .5, the weight of the relevant predicate). There is no information in our tiny knowledge base that directly applies to Harry's beliefs, but the simple belief transfer theory we presented above can be used to conclude that Harry's beliefs about the effects of performing a get action are the same as Flakey's. In particular, the BEL subgoal unifies with the consequent of Axiom (5). Two of the three antecedents then directly match facts in the knowledge base: Axiom (1) expresses Flakey's belief about the effect of the get action, and Axiom (7) expresses its belief that this is likely to be commonly known. The remaining subgoal,

\[\text{Shared}(\text{Harry, To(Get(Flakey, Report), Has(Flakey, Report)))} \]

is assumed at cost 9 (90 * .1), for a total proof assumption cost of 59. Our abductive proof therefore yields a solution that suggests that, if we know that Harry wants Flakey to get a report, and we assume that Harry believes that Flakey's getting a report results in its (Flakey's) having it, and we further assume that Harry has the goal of Flakey having the report, then we can conclude that Harry wants Flakey to get the report so that it will have it.

We are not quite finished yet, because we still need to check the assumption set for consistency with the base theory. We do this by attempting.
an abductive proof of the negation of each assumption in turn, with a cost equal to the initial, arbitrarily chosen cost for the main proof. The attempt to prove the negation of the shared belief assumption at any cost less than the cost of assuming it outright fails, so this assumption is consistent with the database. The situation is more complicated for the proof of

\[-\text{ACH}(\text{Harry}, \text{Has(} \text{Flakey, Report} \text{))}.\]

This negated assumption unifies with the consequent Axiom(4), and the resulting BEL subgoal can be proved by using Axioms (6), (2), and (8), and assuming, at a cost of 90, that

\[\text{Shared}(\text{Harry}, \text{Has(} \text{Flakey, Report} \text{))}.\]

The further recursive attempt to prove the negation of this assumption fails, and therefore we have found that it is possible to attribute to Harry the belief that Flakey already has the report; this then could potentially defeat the argument that he has the goal of Flakey obtaining it. However, note that the assumption cost of this refutation is greater than the assumption cost of the proof. We therefore reject the refutation in favor of the original proof. In the ARGH formulation, we noted that the ascription of a belief that resulted from the use of the \textit{believe} rule is defeated by any inconsistent ascription that resulted from the use of the \textit{to} rule. We have represented this same defeat condition within the weighted abduction framework by a choice of weighting factors that establishes a preference for the consistency of the actor's goals and associated actions over the consistency between the observer's beliefs and those of the actor.
5 Conclusion

In this paper, we have suggested how one can recast an argumentation-style reasoning framework for plan ascription using a weighted abduction system. The question of which approach will turn out to be better suited to the problem remains open. In some respects, argumentation systems have more expressive power than does weighted abduction. There are certain defeat rules that simply cannot be expressed within the framework of weighted abduction. For example, in principle the Conflicting Action Defeat rule could have been written "the other way around": one could have specified that an argument whose support set is a subset of the support set of another argument defeats that latter argument. Nothing in the argumentation formalism would rule out such a defeat rule, although it would be highly counterintuitive. On the other hand, such a rule would not be expressible in the weighted abduction framework. However, if all such rules are counterintuitive, this may actually count as an advantage for weighted abduction: in general, it is computationally useful to restrict the generality of a system, so that just those facts that are reasonable to express can be expressed. Although no claims about relative computational costs can yet be made, because the implementation of ARGIF is still preliminary, the general claim is consistent with experience.

A preliminary implementation of the weighted abduction formulation of plan recognition and evaluation described here has been completed using the Prolog Technology Theorem Prover (PTTP) [St88b]; it has been applied to all of the examples discussed by KP.
In general, weighted abduction carries certain implicit assumptions about how arguments are to be compared with respect to their global coherence. Argumentation systems require that these implicit assumptions be made explicit in many different ways. It remains an empirical question precisely how well suited the implicit global evaluation of weighted abduction is for various user-modeling tasks. The ongoing work, reported on in this paper, involves investigating further the claim that these assumptions are well suited to tasks like plan ascription that involve reasoning about mental state.

References

