April 1971

REASONING BY ANALOGY AS AN AID TO HEURISTIC THEOREM PROVING

by

Robert E. Kling

Paper accepted for presentation at IFIP Congress '71, Ljubljana, Yugoslavia, August 23-28, 1971

Artificial Intelligence Group
Technical Note 49R
SRI Project 8259

The research reported herein was sponsored by the Advanced Research Projects Agency and the National Aeronautics and Space Administration under Contract NAS12-2221.
REASONING BY ANALOGY AS AN AID TO HEURISTIC THEOREM PROVING

ROBERT E. KLING
Stanford Research Institute
Menlo Park, California

When heuristic problem-solving programs are faced with large data bases that contain numbers of facts far in excess of those needed to solve any particular problem, their performance rapidly deteriorates. In this paper, the correspondence between a new unsolved problem and a previously solved analogous problem is computed and invoked to tailor large data bases to manageable sizes.

This paper outlines the design of an algorithm for generating and exploiting analogies between theorems posed to a resolution-logic system. These algorithms are believed to be the first computationally feasible development of reasoning by analogy to be applied to heuristic theorem proving.

Any contemporary heuristic deductive theorem-proving system that proves theorems by applying some rules of inference to an explicit set of axioms must use a carefully tailored data base. Most search procedures will generate many irrelevant inferences when seeking the proof of some nontrivial theorem even when they are given a minimal set of axioms. Generally, the effective power of a search procedure is limited by the memory capacity of a particular system: most theorem provers run out of space (absorbed by irrelevant inferences) before they run out of time when they fail to prove a hard theorem.

Consider a particular theorem T_A that can be proved with a set of axioms D. Suppose that a theorem-prover S can prove T_A within its memory limitations. Suppose D is expanded to D' by adding axioms that include many of the same relations that appear in D. If S attempts to prove T_A again, it will generate many new irrelevant inferences that are derived from the axioms in $D' = D$. In fact, the size of D' need not be too much larger than that of D to render T_A unprovable by S.

Typical theorem provers work with a D' composed of less than 20 axioms. If T_A is hard for S, then just a few additional axioms may add a sufficient number of inferences to the search space to exhaust the memory before a solution is found. In the '60's, most research focused on the organization of S and the development of a variety of ever-more-efficient search procedures. Consequently, researchers could choose an optimal D' for each particular theorem without sacrificing their research goals. In contrast, as heuristic deductive systems are being proposed to solve real-world problems, such as robot manipulation [1], larger nonoptimal data bases are necessary.

Suppose we have a theorem T_A and a large data base D'. In general, there is no way to choose a small subset S of D' such that $D = T_A$. Suppose we had previously solved some theorem T that is analogous to T_A in so far as analogs of the axioms used in the proof of T will be required in the proof of T_A. If we could generate the analogy between T_A and T to find the set of axioms and use them as D, then we could let S attempt to prove T_A with greater hope of success. This paper describes a set of algorithms for generating an analogy between some given pair of analogous theorems and for exploiting this analogy to estimate D. The preceding discussion has been rather general and applies to any heuristic theorem prover such as S. [3] and resolution [4]. However, each paradigm will require slight variant representations and methods for generating and using analogical information. Effective research demands working with a specific theorem prover; for reasons of convenience, I have chosen QAS, [5] a resolution-based theorem prover. QAS and the algorithm $ZORA-I$, described below, are implemented in LISP on a PDP-10 at Stanford Research Institute.

This paper is devoted to briefly motivating and outlining the $ZORA-I$ algorithm. Detailed explication requires considerably more space than is available here. I recommend that the reader whose interest is excited by this cursory account explore the lengthy accounts [6], [7] which supply all or some of the missing details.

Before describing $ZORA-I$ abstractly, I want to exemplify the kinds of theorems that it tackles. Briefly, they are theorem-pairs in domains which can be axiomatized without constants (e.g., mathematics) that have one-to-one analogies between their predicates. The theorems that follow are fairly hard for QAS to solve even with an optimal memory. For example, $ZORA-I$ will be given the proof of the theorem

T_1. The intersection of two abelian groups is an abelian group,

and is asked to generate an analogy with

T_2. The intersection of two commutative rings is a commutative ring;

or, given

T_3. A factor group G/H is simple iff H is a maximal normal subgroup of G, and its proof, $ZORA-I$ is asked to generate an adequate analogy with

T_4. A quotient ring A/C is simple iff C is a maximal ideal in A.

This observation is based upon my own experience with resolution systems and is corroborated by other researchers using different paradigms [2], [3].
T_1 has a 35-step proof and T_2 has a 50-step proof in a decent axiomatization. A good theorem prover (C4D) generates about 300 inferences in searching for either proof when its data base is minimized to the 13 axioms required for the proof of T_1 or to the 12 axioms required for the proof of T_2. If the data base is increased to 30 reasonable axioms, the theorem prover may easily generate 600 clauses and run out of space before a proof is found. Note also that the predicates used in the problem statement of these theorems contain only a few of the predicates used in any proof. Thus, T_2 can be stated using only the predicates \{INTERSECTION; ABELIAN\}, but a proof will use in addition \{GROUP; IN; TIMES; SUBSET; SUBGROUP; COMMUTATIVE\}. Thus, while the first set must map into \{INTERSECTION, COMMUTATIVE\} which appear in the statement of T_2, the second set can map into anything.

ZORBA-1 considers an analogy to be a set of three maps:

1. A one-one map between predicates
2. A many-many map between the variable that appears in the statements of T and T_1
3. A one-many map between the axioms in the proof of T and some of the clauses that appear in the large data base D.

It begins with no a priori information about which particular predicates or clauses are to be analogous, and creates a mapping (analogy) in which it finds analogs for each predicate and clause used in the proof of T.

Figure 1 shows a set P including all the predicates in the data base. Let P_1' and P_2' be the set of predicates in the statements of the new and old theorems, T_1, and T. In addition, we know the predicates in some proof of T (since we have a proof at hand). We need to find the set P_2 that contains the predicates we expect in some proof of T_1, and we want a map G: $G(P_1') = P_2'$. For example, the last page $P_1' = \{\text{INTERSECTION, ABELIAN}\}$ and $P_2' = \{\text{INTERSECTION, COMMUTATIVE}\}$.

Clearly, a wise method would be to find some G_1, a restriction of G to P_1' such that $G_1(P_1') = P_2'$, and then incrementally extend G_1 to G_2, G_3, ..., each on larger domains until some $G_k(P_1') = P_2'$. Each incremental extension G_k differs from its predecessor G_{k-1} in that it includes the analog of at least one predicate and one axiom which does not appear on G_{k-1}. Each of these successive mappings is called a "partial analogy" in contrast to a "complete analogy" which includes the analog of every predicate and every clause used in the proof of T. ZORBA-1 performs in such a way that each incremental extension picks up new clauses that could be used in a proof of T_k. ZORBA-1 first computes G_1 which maps P_1' onto P_2' by using a special program called INITIAL-MAP.

ZORBA-1 now will describe the generation algorithm in more detail.

The user presents ZORBA-1 with the following information:

1. A new theorem, T_k, to prove.
2. An analogous theorem, T (chosen by the user), that has already been proved.
3. The proof of theorem T, proof T', which is an ordered set of clauses c_1, c_2, ..., c_l such that c_k, c_k is either
 a. A clause in T.
 b. An axiom.
 c. Derived by resolution from two clauses c_j and c_j, $j < k$ and $j < k$.

These three items of information are problem-dependent. ZORBA-1 accesses a large data base which includes more axioms than it needs for T or T, and is, in this sense, problem independent. In addition, the user specifies a "semantic template" for each predicate in his language. This template associates a (semantic) type with each predicate and predicate-place and is used to help constrain the predicate mappings to be meaningful. For example, (STRUCTURE SET OPERATOR) is associated with the predicate "group." Thus, ZORBA-1 knows that "group" is a structure, "A" is a set, and "\times" is an operator when it has seen group[4,*].

ZORBA-1 allows only associations between predicates of the same type, and the semantic types are used to assist associating the arguments of atoms of different order with each other. Currently, the predicate types (for algebra) are STRUCTURE, RELATIONS, MAP, and RELSTRUCTURE; the variable types are SET, OPERATOR, FUNCTION, and...
OBJECT: These semantic templates are critical for the operation of INITIAL-MAP and only incidentally by EXTENDER. Instead, EXTENDER uses an entity called a "clause description." A description, descr[c], can be made for any clause c according to the following rules:

1. \(\forall a \text{ If both } p \text{ and } \neg p \text{ appear in } c, \text{ then } \text{impond}[p] \in \text{descr}[c]. \)
2. \(\forall a \text{ If } p \text{ appears in } c, \text{ then } \text{pos}[p] \in \text{descr}[c]. \)
3. \(\forall a \text{ If } \neg p \text{ appears in } c, \text{ then } \text{neg}[p] \in \text{descr}[c]. \)

Thus, the axiom, "every abelian group is a group," e.g.,

\[
Y(x; y) \text{ abelian } [x; *] \Rightarrow \text{group } [x; *],
\]

is expressed by the clause

\[
e_1: \neg \text{abelian } [x; *] \lor \text{group } [x; *],
\]

which is described by

\[
d_1: \neg \text{abelian } \lor \text{pos } \text{group }[x; *].
\]

The theorem, "the homomorphic image of a group is a group," e.g.,

\[
Y(x; y) \ast y \in \text{hom } [g; x; y] \land \text{group } [x; *] \Rightarrow \text{group } [y; *]
\]

is expressed by the clause

\[
e_2: \neg \text{hom } [g; x; y] \lor \text{group } [x; *] \lor \text{group } [y; *],
\]

and is described by

\[
d_2: \neg \text{hom } \lor \text{impond } \text{group }[x; *].
\]

These clause descriptions are used by EXTENDER when it is seeking the analog of a particular axion. When it wants to find the analog of an axion \(ax_k \) in an attempt to extend an analogy \(G_j \), it then searches \(D' \) for some clause which "satisfies" the description \(G_j[\text{descr } ax_k] \). A clause c is said to satisfy a description d iff \(d \subseteq \text{descr } c \). Thus, c_1, but not c_2, satisfies pos[group]. The analog of the description of \(ax_k \) under \(G_j \), \(G_j[\text{descr } ax_k] \), is created by substituting each predicate in descr[c] with its analog that appears in \(G_j \). If an analogy \(G_j \) associates:

\[
\text{hom } \text{hom} \\
\text{group } \text{ring} \\
\text{abelian } \text{commutativering}
\]

then,

\[
G_j[\text{descr } c_1] = \neg \text{commutativering }, \text{pos } [\text{ring}]
\]

and

\[
G_j[\text{descr } c_2] = \neg \text{hom }, \text{impond } [\text{ring}].
\]

ZORBA-I operates in two stages. INITIAL-MAP is applied to the statements of \(T_1 \) and \(T_3 \) to create an \(G_1 \) which is used by EXTENDER to start its sequence of partial analogies \(G_j \) which terminates in a complete analogy \(G_j \). INITIAL-MAP starts without a priori information about the analogy it is asked to help create. It utilizes the syntax of the wfs which express \(T \) and \(T_3 \) as well as the semantic templates to generate \(G_j \) which includes all the predicates (and variables) which appear in the statement of \(T \). For example, the statements of \(T_1 - T_3 \) can contain three of the nine predicates used in proof[\(T_1 \)], and the statements of \(T_1 - T_3 \) can contain five of the nine predicates used in proof[\(T_3 \)]. The INITIAL-MAP uses a rule of inference called \(\text{ATOMMATCH} \)

\[
\text{atom}_1, \text{atom}_2, \text{atom}_3 \Rightarrow \text{ATOMMATCH}
\]

which extends analogy by adding the predicates and mapped variables of \(\text{atom}_1 \) and \(\text{atom}_2 \) to analogy \(G_1 \). \(\text{ATOMMATCH} \) now limits ZORBA-I to analogies where atoms' map one-to-one.

\(\text{INITIAL-MAP} \) is a sophisticated search program that sweeps \(\text{ATOMMATCH} \) over likely pairs of atoms, one from the statement of \(T_1 \) and the other from the statement of \(T_3 \). Alternative analogies are kept in parallel (no backup), and INITIAL-MAP terminates when it has found some analogy that includes all the predicates in theorem statements. Only one analogy is output.

\(\text{EXTENDER} \) accepts the initial analogy generated by INITIAL-MAP and uses it as the first term in a sequence of successive analogies \(G_j \). In addition it accesses both to the large database \(D' \) used by the theorem prover and the (unordered) set of axioms used in proof[\(T_1 \)]. The axioms used in proof[\(T_1 \)] are called \(\text{AXSET} \) and are few in comparison to the size of the database \(D' \) and comprise the "domain" for a complete \(G_j \). For each axiom in \(\text{AXSET} \), we want to find a clause from \(D' \) which is analogous to it. Now, EXTENDER treats \(\text{AXSET} \) in a special way by partitioning it into three disjoint subsets called ALL, \(\text{SOME} \), and \(\text{NONE} \).

If all the predicates on an axion \(ax_k \) are in \(G_j \), \(ax_k \in \text{ALL} \), if some of its predicates are in \(G_j \), \(ax_k \in \text{SOME} \), and if none of its predicates are in \(G_j \), \(ax_k \in \text{NONE} \). This partition is trivial to compute, and initially none or a few \(ax_k \in \text{ALL} \), and most \(ax_k \) belong to \(\text{SOME} \) and \(\text{NONE} \). We want to develop a sequence of analogies \(G_j \) that contain an increasingly larger set of predicates and their analogs. If an axion is contained in \(\text{ALL} \), then by definition we know the analogs of each of its predicates. It can't assist us in learning about new predicate associations. In contrast, we know nothing about the analogs of any of the predicates used in axioms contained in \(\text{NONE} \). Analog clauses for these axions are hard to deduce since we have no relevant information to start a search. Unlike these two extreme cases, the axioms in \(\text{SOME} \) are especially helpful and will become the focus of our attention. For each such axiom we know the analogs of some of its predicates from \(G_j \). These

\(^* \text{Atoms, not predicates.} \)

\(^+ \text{In addition, it is rather fast. It generates the analogy for } T_1 - T_3 \text{ with about 2 seconds of \(\text{PDP-10 CPU time} \).} \)
provide sufficient information to begin a search for clauses which are analogous to them. Thus, the analogues of axioms in \(\text{SOME} \) provide a bridge between the known and the unknown, between the current \(C_j \) and a descendant \(C_{j+1} \). When EXTENDER has satisfactorily terminated, \(\text{AXSET} = \text{NONE} = \emptyset \). So the game becomes finding some way to systematically move axioms from \(\text{NONE} \) to \(\text{SOME} \) in a way that for each \(a \), moved, some image \(C_j(a_{\emptyset}) = a_{\emptyset}' \) is found that can be used in the proof of \(T_a \). Moreover, each new association of clauses should help us extend \(C_j \rightarrow C_{j+1} \) by providing information about predicates not contained in \(C_j \). When we finally associate an axiom with its analog, we can match their respective descriptions and associate the predicates of each that don't appear on \(C_j \). We can extend \(C_j \) to \(C_{j+1} \) by seeking the analogs of axioms on \(\text{SOME} \).

When image clauses are sought, all the clauses that satisfy a particular description are sieved out of the data base. EXTENDER creates the analog of the description of each clause in \(\text{SOME} \) under the current analogy \(C_j \). Usually \[6\] this description is restricted to include only those predicates that appear on \(C_j \). For example, if our analogy contained only

\[\text{G}_j: \alpha \rightarrow \text{ring} \]

and we were seeking an analog of clause \(c_2 \), we would look for any clause that satisfies the description \[\text{impc}(\text{ring})\]. If \(G_j \) were more complete, for example,

\[\text{G}_j: \alpha \rightarrow \text{ring} \]
\[\text{hom} \rightarrow \text{hom} \]

we would look for clauses that satisfy \(\text{neg(hom)} \), \(\text{impc(ring)} \). In the first case EXTENDER would find several clauses, while in the latter case, certainly fewer would be selected. The actual number depends upon the data base \(D' \). Often, there will be some axiom \(a_{\emptyset} \rightarrow \text{SOME} \) which has but one candidate image under \(G_j \). EXTENDER will attempt to extend \(G_j \) by mapping just this one pair of clauses, and then iterate with \(G_{j+1} \) as its active analogy. When no clause returns only one candidate, EXTENDER uses an ordering relation to select the most likely image out of the set of candidates.

Theorem \(T_2 \) described above required the axiom:

\[\text{C}_2: \neg \text{int}(x,y,z) \lor \text{subset}(x,y) \]

which is described by: \(\text{pos(}\text{subset}) \), \(\text{neg(}\text{int}) \). When the system searches memory for all clauses that satisfy this description, it finds, in addition

\[\text{C}_1: \neg \text{int}(x,y,z) \lor \text{subset}(x,z) \]

which has an identical description. ZORBA-I discriminates clauses only in terms of their descriptions and does not discriminate between these two clauses. For most clauses \(c, c' \) is the only clause that satisfies \(\text{desc(c)} \). But some clauses, such as \(c_2 \) above, may have two or more "description equivalents." In practice, we find few such clauses.

Given a clause \(a_{\emptyset} \rightarrow \text{SOME} \) with description \(d' \), its image set \(a_{\emptyset}' \) and the partial analogy \(G_j \), developed at this point, EXTENDER picks up the analog information regarding the new predicates appearing in \(a_{\emptyset} \) and \(a_{\emptyset}' \) by deleting from \(a_k \) and \(a_k' \) all the terms referencing the predicates \(C_j \). If there is one term left in \(a_k \) and \(a_k' \), the corresponding predicates are mapped by default. If more terms are left, the predicates are mapped in a way that preserves (1) description features (e.g., \(\text{pos} \) terms are associated with \(\text{pos} \) terms) and (2) semantic types of predicates.

If the system knows that

\[\text{abelian} \rightarrow \text{cring} \]

and wants to associate the clause (from \(\text{AXSET} \))

\[\neg \text{abelian} \rightarrow \text{cring} \]

with the clause

\[\neg \text{cring} \rightarrow \text{commutative} \]

it compares the description

\[\text{neg(abelian)}, \text{pos(commutative)} \]

with

\[\text{neg(cring)}, \text{pos(commutative)} \]

and extends the analogy to include commutative \(\rightarrow \) commutative.

The preceding discussion provides an introduction to the ZORBA-I algorithm. Figure 2 describes the relationship between ZORBA-I and QAS. While EXTENDER iterates through the partitions

![FIG. 2](image)

RELATIONSHIP BETWEEN SECTION OF ZORBA-I AND QAS

of \(\text{AXSET} \) to create a final analogy, it accesses \(D' \) and builds up a small set of images of the clauses on \(\text{AXSET} \). When it terminates (all clauses have images), it passes this image set into the memory of QAS, which then attempts to prove \(T_a \) using the restricted data base.

At this time, the INITIAL-MAP and EXTENDER run on problem pairs in algebra such that \(T_1 - T_2 - T_3 - T_4 \). A large data base of 250 clauses includes the axioms needed for these proofs but is much too large for QAS to use in any effective way. In effect, without ZORBA-I, QAS cannot prove any of these theorems using the full data base.
Theorems T_1 and T_2 each require 13 axioms, whereas T_1 and T_4 require 12. When ZODBA-I is asked to find an axiom set for T_2 given the proof of T_1 and the 250-clause algebraic data base, it finds 16 axioms, which include the necessary 13 in about 16.5 seconds. When it is applied to T_3, it finds 15 axioms, including all the necessary 12. In both cases, the QAS is able to prove the new theorems (T_3 and T_4) with little more search than a humanly selected optimal data base would generate.

SUMMARY

The preceding sections described a specific (implemented) algorithm for generating the analogy between a new and an old problem, extracting pragmatically important information from this analogy to aid a problem solver in its search for the solution to the new problem. The system knows none of the associations that constitute the analogy in advance, although it does have a description of some of the semantics (templates) of the language. It can generate analogies that involve many relations (predicates) but is implemented to meet several severe restrictions. In particular:

1. The problem solver is a resolution-logic based system with one rule of inference.
2. The extracted information takes only the form of a problem-dependent data base.
3. The analogies involve one to one between predicates.

None of the restrictions is necessary, and weakening is quite possible. In general, ZODBA-I restricts the environment on which its associated problem solver (QAS) operates. This approach circumvents the need for a sequential planning language and detailed information specifying exactly how each (analog) axiom is to be used. Nevertheless, the analogy generator is nontrivial and needs only a simply semantic type theory represented by templates to supplement the problem-solving language (first-order predicate calculus). Although the analogies are not generated by a formal inference system, they provide information which helps a highly formal theorem-proving system prove theorems more efficiently.

ACKNOWLEDGEMENT

The research reported here was sponsored by the Advanced Research Projects Agency and the National Aeronautics and Space Administration under contract NAG-12-2221.

REFERENCES

