Search |  Contact |  SRI Home Do not follow this link, or your host will be blocked from this site. This is a spider trap. Do not follow this link, or your host will be blocked from this site. This is a spider trap. Do not follow this link, or your host will be blocked from this site. This is a spider trap.A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A ASRI International.  333 Ravenswood Avenue.  Menlo Park, CA 94025-3493. SRI International is a nonprofit corporation.

Publication in BibTeX Format

@INBOOK{AICPub1583:2007, AUTHOR={Rosenfeld, A. and Kraus, S. and Ortiz, C.}, TITLE={ Quantifying the Expected Utility of Information in Multi-agent Scheduling Tasks}, BOOKTITLE={Cooperative Information Agents XI}, ISBN={978-3-540-75118-2}, PUBLISHER={Springer}, SERIES={Lecture Notes in Computer Science}, PAGES={104-118}, VOLUME={4676}, YEAR={2007}, COPYRIGHT={2007}, ABSTRACT={In this paper we investigate methods for analyzing the expected value of adding information in distributed task scheduling problems. As scheduling problems are NP-complete, no polynomial algorithms exist for evaluating the impact a certain constraint, or relaxing the same constraint, will have on the global problem. We present a general approach where local agents can estimate their problem tightness, or how constrained their local subproblem is. This allows these agents to immediately identify many problems which are not constrained, and will not benefit from sending or receiving further information. Next, agents use traditional machine learning methods based on their specific local problem attributes to attempt to identify which of the constrained problems will most benefit from human attention. We evaluated this approach within a distributed cTAEMS scheduling domain and found this approach was overall quite effective.} }

SRI International
©2014 SRI International 333 Ravenswood Avenue, Menlo Park, CA 94025-3493
SRI International is an independent, nonprofit corporation. Privacy policy